Pregunta
upstudy study bank question image url

b. \( 3 \frac{7}{8}+2 \frac{1}{2}+4 \frac{5}{6}= \) d. \( 8 \frac{3}{10}-2 \frac{1}{6}= \) f. \( \quad 3 \frac{1}{4}+2 \frac{1}{6}-2 \frac{3}{3} \) h. \( 8 \frac{1}{5}-2 \frac{3}{9}+1 \frac{1}{7} \)

Ask by Murray Lynch. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- b. \( 11 \frac{5}{24} \) - d. \( 6 \frac{2}{15} \) - f. \( 3 \frac{5}{12} \) - h. \( 7 \frac{1}{105} \)

Solución

Calculate the value by following steps: - step0: Calculate: \(8+\frac{3}{10}-2-\frac{1}{6}\) - step1: Subtract the numbers: \(6+\frac{3}{10}-\frac{1}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{6\times 10\times 3}{10\times 3}+\frac{3\times 3}{10\times 3}-\frac{5}{6\times 5}\) - step3: Multiply the numbers: \(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{10\times 3}-\frac{5}{6\times 5}\) - step4: Multiply the numbers: \(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{30}-\frac{5}{6\times 5}\) - step5: Multiply the numbers: \(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{30}-\frac{5}{30}\) - step6: Transform the expression: \(\frac{6\times 10\times 3+3\times 3-5}{30}\) - step7: Multiply the terms: \(\frac{180+3\times 3-5}{30}\) - step8: Multiply the numbers: \(\frac{180+9-5}{30}\) - step9: Calculate: \(\frac{184}{30}\) - step10: Reduce the fraction: \(\frac{92}{15}\) Calculate or simplify the expression \( 8 + 1/5 - 2 - 3/9 + 1 + 1/7 \). Calculate the value by following steps: - step0: Calculate: \(8+\frac{1}{5}-2-\frac{3}{9}+1+\frac{1}{7}\) - step1: Reduce the fraction: \(8+\frac{1}{5}-2-\frac{1}{3}+1+\frac{1}{7}\) - step2: Calculate: \(7+\frac{1}{5}-\frac{1}{3}+\frac{1}{7}\) - step3: Reduce fractions to a common denominator: \(\frac{7\times 5\times 3\times 7}{5\times 3\times 7}+\frac{3\times 7}{5\times 3\times 7}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\) - step4: Multiply the terms: \(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{5\times 3\times 7}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\) - step5: Multiply the terms: \(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\) - step6: Multiply the terms: \(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{105}+\frac{5\times 3}{7\times 5\times 3}\) - step7: Multiply the terms: \(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{105}+\frac{5\times 3}{105}\) - step8: Transform the expression: \(\frac{7\times 5\times 3\times 7+3\times 7-5\times 7+5\times 3}{105}\) - step9: Multiply the terms: \(\frac{735+3\times 7-5\times 7+5\times 3}{105}\) - step10: Multiply the numbers: \(\frac{735+21-5\times 7+5\times 3}{105}\) - step11: Multiply the numbers: \(\frac{735+21-35+5\times 3}{105}\) - step12: Multiply the numbers: \(\frac{735+21-35+15}{105}\) - step13: Calculate: \(\frac{736}{105}\) Calculate or simplify the expression \( 3 + 1/4 + 2 + 1/6 - 2 - 3/3 \). Calculate the value by following steps: - step0: Calculate: \(3+\frac{1}{4}+2+\frac{1}{6}-2-\frac{3}{3}\) - step1: Divide the terms: \(3+\frac{1}{4}+2+\frac{1}{6}-2-1\) - step2: Simplify: \(3+\frac{1}{4}+\frac{1}{6}-1\) - step3: Subtract the numbers: \(2+\frac{1}{4}+\frac{1}{6}\) - step4: Reduce fractions to a common denominator: \(\frac{2\times 4\times 3}{4\times 3}+\frac{3}{4\times 3}+\frac{2}{6\times 2}\) - step5: Multiply the numbers: \(\frac{2\times 4\times 3}{12}+\frac{3}{4\times 3}+\frac{2}{6\times 2}\) - step6: Multiply the numbers: \(\frac{2\times 4\times 3}{12}+\frac{3}{12}+\frac{2}{6\times 2}\) - step7: Multiply the numbers: \(\frac{2\times 4\times 3}{12}+\frac{3}{12}+\frac{2}{12}\) - step8: Transform the expression: \(\frac{2\times 4\times 3+3+2}{12}\) - step9: Multiply the terms: \(\frac{24+3+2}{12}\) - step10: Add the numbers: \(\frac{29}{12}\) Calculate or simplify the expression \( 3 + 7/8 + 2 + 1/2 + 4 + 5/6 \). Calculate the value by following steps: - step0: Calculate: \(3+\frac{7}{8}+2+\frac{1}{2}+4+\frac{5}{6}\) - step1: Add the numbers: \(9+\frac{7}{8}+\frac{1}{2}+\frac{5}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{9\times 8\times 3}{8\times 3}+\frac{7\times 3}{8\times 3}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\) - step3: Multiply the numbers: \(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{8\times 3}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\) - step4: Multiply the numbers: \(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\) - step5: Multiply the terms: \(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{24}+\frac{5\times 4}{6\times 4}\) - step6: Multiply the numbers: \(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{24}+\frac{5\times 4}{24}\) - step7: Transform the expression: \(\frac{9\times 8\times 3+7\times 3+4\times 3+5\times 4}{24}\) - step8: Multiply the terms: \(\frac{216+7\times 3+4\times 3+5\times 4}{24}\) - step9: Multiply the numbers: \(\frac{216+21+4\times 3+5\times 4}{24}\) - step10: Multiply the numbers: \(\frac{216+21+12+5\times 4}{24}\) - step11: Multiply the numbers: \(\frac{216+21+12+20}{24}\) - step12: Add the numbers: \(\frac{269}{24}\) Let's solve each of the problems step by step. ### b. \( 3 \frac{7}{8} + 2 \frac{1}{2} + 4 \frac{5}{6} \) 1. Convert each mixed number to an improper fraction: - \( 3 \frac{7}{8} = \frac{3 \times 8 + 7}{8} = \frac{31}{8} \) - \( 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{5}{2} = \frac{5 \times 4}{2 \times 4} = \frac{20}{8} \) - \( 4 \frac{5}{6} = \frac{4 \times 6 + 5}{6} = \frac{29}{6} = \frac{29 \times 4}{6 \times 4} = \frac{116}{24} \) 2. Find a common denominator (which is 24): - Convert \( \frac{31}{8} = \frac{31 \times 3}{8 \times 3} = \frac{93}{24} \) - Convert \( \frac{20}{8} = \frac{20 \times 3}{8 \times 3} = \frac{60}{24} \) - \( \frac{29}{6} = \frac{29 \times 4}{6 \times 4} = \frac{116}{24} \) 3. Add the fractions: \[ \frac{93}{24} + \frac{60}{24} + \frac{116}{24} = \frac{269}{24} \] 4. Convert back to a mixed number: \[ 11 \frac{5}{24} \] ### d. \( 8 \frac{3}{10} - 2 \frac{1}{6} \) 1. Convert each mixed number to an improper fraction: - \( 8 \frac{3}{10} = \frac{8 \times 10 + 3}{10} = \frac{83}{10} \) - \( 2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{13}{6} \) 2. Find a common denominator (which is 30): - Convert \( \frac{83}{10} = \frac{83 \times 3}{10 \times 3} = \frac{249}{30} \) - Convert \( \frac{13}{6} = \frac{13 \times 5}{6 \times 5} = \frac{65}{30} \) 3. Subtract the fractions: \[ \frac{249}{30} - \frac{65}{30} = \frac{184}{30} \] 4. Simplify: \[ \frac{184 \div 2}{30 \div 2} = \frac{92}{15} \] Convert back to a mixed number: \[ 6 \frac{2}{15} \] ### f. \( 3 \frac{1}{4} + 2 \frac{1}{6} - 2 \frac{3}{3} \) 1. Convert each mixed number to an improper fraction: - \( 3 \frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{13}{4} \) - \( 2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{13}{6} \) - \( 2 \frac{3}{3} = 2 \) (since \( \frac{3}{3} = 1 \)) 2. Find a common denominator (which is 12): - Convert \( \frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12} \) - Convert \( \frac{13}{6} = \frac{13 \times 2}{6 \times 2} = \frac{26}{12} \) - Convert \( 2 = \frac{24}{12} \) 3. Combine: \[ \frac{39}{12} + \frac{26}{12} - \frac{24}{12} = \frac{41}{12} \] 4. Convert back to a mixed number: \[ 3 \frac{5}{12} \] ### h. \( 8 \frac{1}{5} - 2 \frac{3}{9} + 1 \frac{1}{7} \) 1. Convert each mixed number to an improper fraction: - \( 8 \frac{1}{5} = \frac{8 \times 5 + 1}{5} = \frac{41}{5} \) - \( 2 \frac{3}{9} = \frac{2 \times 9 + 3}{9} = \frac{21}{9} \) - \( 1 \frac{1}{7} = \frac{1 \times 7 + 1}{7} = \frac{8}{7} \) 2. Find a common denominator (which is 315): - Convert \( \frac{41}{5} = \frac{41 \times 63}{5 \times 63} = \frac{2583}{315} \) - Convert \( \frac{21}{9} = \frac{21 \times 35}{9 \times 35} = \frac{735}{315} \) - Convert \( \frac{8}{7} = \frac{8 \times 45}{7 \times 45} = \frac{360}{315} \) 3. Combine: \[ \frac{2583}{315} - \frac{735}{315} + \frac{360}{315} = \frac{2208}{315} \] 4. Convert back to a mixed number: \[ 7 \frac{1}{105} \] ### Final Answers: - b. \( 11 \frac{5}{24} \) - d. \( 6 \frac{2}{15} \) - f. \( 3 \frac{5}{12} \) - h. \( 7 \frac{1}{105} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle these mixed number operations, first convert them to improper fractions. For instance, \( 3 \frac{7}{8} \) can be converted to \( \frac{31}{8} \). This makes addition and subtraction a breeze! Remember, when adding fractions, find a common denominator, and for subtraction, keep the numerator on top! When you're working with mixed numbers, it’s easy to forget about simplifying your final answers. Always check if the fraction can be reduced or if the whole number part can be combined with the fraction for a more elegant solution. Mixing up parts can be the biggest pitfall, so double-check your steps!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad