Responder
- b. \( 11 \frac{5}{24} \)
- d. \( 6 \frac{2}{15} \)
- f. \( 3 \frac{5}{12} \)
- h. \( 7 \frac{1}{105} \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(8+\frac{3}{10}-2-\frac{1}{6}\)
- step1: Subtract the numbers:
\(6+\frac{3}{10}-\frac{1}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{6\times 10\times 3}{10\times 3}+\frac{3\times 3}{10\times 3}-\frac{5}{6\times 5}\)
- step3: Multiply the numbers:
\(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{10\times 3}-\frac{5}{6\times 5}\)
- step4: Multiply the numbers:
\(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{30}-\frac{5}{6\times 5}\)
- step5: Multiply the numbers:
\(\frac{6\times 10\times 3}{30}+\frac{3\times 3}{30}-\frac{5}{30}\)
- step6: Transform the expression:
\(\frac{6\times 10\times 3+3\times 3-5}{30}\)
- step7: Multiply the terms:
\(\frac{180+3\times 3-5}{30}\)
- step8: Multiply the numbers:
\(\frac{180+9-5}{30}\)
- step9: Calculate:
\(\frac{184}{30}\)
- step10: Reduce the fraction:
\(\frac{92}{15}\)
Calculate or simplify the expression \( 8 + 1/5 - 2 - 3/9 + 1 + 1/7 \).
Calculate the value by following steps:
- step0: Calculate:
\(8+\frac{1}{5}-2-\frac{3}{9}+1+\frac{1}{7}\)
- step1: Reduce the fraction:
\(8+\frac{1}{5}-2-\frac{1}{3}+1+\frac{1}{7}\)
- step2: Calculate:
\(7+\frac{1}{5}-\frac{1}{3}+\frac{1}{7}\)
- step3: Reduce fractions to a common denominator:
\(\frac{7\times 5\times 3\times 7}{5\times 3\times 7}+\frac{3\times 7}{5\times 3\times 7}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\)
- step4: Multiply the terms:
\(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{5\times 3\times 7}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\)
- step5: Multiply the terms:
\(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{3\times 5\times 7}+\frac{5\times 3}{7\times 5\times 3}\)
- step6: Multiply the terms:
\(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{105}+\frac{5\times 3}{7\times 5\times 3}\)
- step7: Multiply the terms:
\(\frac{7\times 5\times 3\times 7}{105}+\frac{3\times 7}{105}-\frac{5\times 7}{105}+\frac{5\times 3}{105}\)
- step8: Transform the expression:
\(\frac{7\times 5\times 3\times 7+3\times 7-5\times 7+5\times 3}{105}\)
- step9: Multiply the terms:
\(\frac{735+3\times 7-5\times 7+5\times 3}{105}\)
- step10: Multiply the numbers:
\(\frac{735+21-5\times 7+5\times 3}{105}\)
- step11: Multiply the numbers:
\(\frac{735+21-35+5\times 3}{105}\)
- step12: Multiply the numbers:
\(\frac{735+21-35+15}{105}\)
- step13: Calculate:
\(\frac{736}{105}\)
Calculate or simplify the expression \( 3 + 1/4 + 2 + 1/6 - 2 - 3/3 \).
Calculate the value by following steps:
- step0: Calculate:
\(3+\frac{1}{4}+2+\frac{1}{6}-2-\frac{3}{3}\)
- step1: Divide the terms:
\(3+\frac{1}{4}+2+\frac{1}{6}-2-1\)
- step2: Simplify:
\(3+\frac{1}{4}+\frac{1}{6}-1\)
- step3: Subtract the numbers:
\(2+\frac{1}{4}+\frac{1}{6}\)
- step4: Reduce fractions to a common denominator:
\(\frac{2\times 4\times 3}{4\times 3}+\frac{3}{4\times 3}+\frac{2}{6\times 2}\)
- step5: Multiply the numbers:
\(\frac{2\times 4\times 3}{12}+\frac{3}{4\times 3}+\frac{2}{6\times 2}\)
- step6: Multiply the numbers:
\(\frac{2\times 4\times 3}{12}+\frac{3}{12}+\frac{2}{6\times 2}\)
- step7: Multiply the numbers:
\(\frac{2\times 4\times 3}{12}+\frac{3}{12}+\frac{2}{12}\)
- step8: Transform the expression:
\(\frac{2\times 4\times 3+3+2}{12}\)
- step9: Multiply the terms:
\(\frac{24+3+2}{12}\)
- step10: Add the numbers:
\(\frac{29}{12}\)
Calculate or simplify the expression \( 3 + 7/8 + 2 + 1/2 + 4 + 5/6 \).
Calculate the value by following steps:
- step0: Calculate:
\(3+\frac{7}{8}+2+\frac{1}{2}+4+\frac{5}{6}\)
- step1: Add the numbers:
\(9+\frac{7}{8}+\frac{1}{2}+\frac{5}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{9\times 8\times 3}{8\times 3}+\frac{7\times 3}{8\times 3}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\)
- step3: Multiply the numbers:
\(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{8\times 3}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\)
- step4: Multiply the numbers:
\(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{2\times 4\times 3}+\frac{5\times 4}{6\times 4}\)
- step5: Multiply the terms:
\(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{24}+\frac{5\times 4}{6\times 4}\)
- step6: Multiply the numbers:
\(\frac{9\times 8\times 3}{24}+\frac{7\times 3}{24}+\frac{4\times 3}{24}+\frac{5\times 4}{24}\)
- step7: Transform the expression:
\(\frac{9\times 8\times 3+7\times 3+4\times 3+5\times 4}{24}\)
- step8: Multiply the terms:
\(\frac{216+7\times 3+4\times 3+5\times 4}{24}\)
- step9: Multiply the numbers:
\(\frac{216+21+4\times 3+5\times 4}{24}\)
- step10: Multiply the numbers:
\(\frac{216+21+12+5\times 4}{24}\)
- step11: Multiply the numbers:
\(\frac{216+21+12+20}{24}\)
- step12: Add the numbers:
\(\frac{269}{24}\)
Let's solve each of the problems step by step.
### b. \( 3 \frac{7}{8} + 2 \frac{1}{2} + 4 \frac{5}{6} \)
1. Convert each mixed number to an improper fraction:
- \( 3 \frac{7}{8} = \frac{3 \times 8 + 7}{8} = \frac{31}{8} \)
- \( 2 \frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{5}{2} = \frac{5 \times 4}{2 \times 4} = \frac{20}{8} \)
- \( 4 \frac{5}{6} = \frac{4 \times 6 + 5}{6} = \frac{29}{6} = \frac{29 \times 4}{6 \times 4} = \frac{116}{24} \)
2. Find a common denominator (which is 24):
- Convert \( \frac{31}{8} = \frac{31 \times 3}{8 \times 3} = \frac{93}{24} \)
- Convert \( \frac{20}{8} = \frac{20 \times 3}{8 \times 3} = \frac{60}{24} \)
- \( \frac{29}{6} = \frac{29 \times 4}{6 \times 4} = \frac{116}{24} \)
3. Add the fractions:
\[
\frac{93}{24} + \frac{60}{24} + \frac{116}{24} = \frac{269}{24}
\]
4. Convert back to a mixed number:
\[
11 \frac{5}{24}
\]
### d. \( 8 \frac{3}{10} - 2 \frac{1}{6} \)
1. Convert each mixed number to an improper fraction:
- \( 8 \frac{3}{10} = \frac{8 \times 10 + 3}{10} = \frac{83}{10} \)
- \( 2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{13}{6} \)
2. Find a common denominator (which is 30):
- Convert \( \frac{83}{10} = \frac{83 \times 3}{10 \times 3} = \frac{249}{30} \)
- Convert \( \frac{13}{6} = \frac{13 \times 5}{6 \times 5} = \frac{65}{30} \)
3. Subtract the fractions:
\[
\frac{249}{30} - \frac{65}{30} = \frac{184}{30}
\]
4. Simplify:
\[
\frac{184 \div 2}{30 \div 2} = \frac{92}{15}
\]
Convert back to a mixed number:
\[
6 \frac{2}{15}
\]
### f. \( 3 \frac{1}{4} + 2 \frac{1}{6} - 2 \frac{3}{3} \)
1. Convert each mixed number to an improper fraction:
- \( 3 \frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{13}{4} \)
- \( 2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{13}{6} \)
- \( 2 \frac{3}{3} = 2 \) (since \( \frac{3}{3} = 1 \))
2. Find a common denominator (which is 12):
- Convert \( \frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12} \)
- Convert \( \frac{13}{6} = \frac{13 \times 2}{6 \times 2} = \frac{26}{12} \)
- Convert \( 2 = \frac{24}{12} \)
3. Combine:
\[
\frac{39}{12} + \frac{26}{12} - \frac{24}{12} = \frac{41}{12}
\]
4. Convert back to a mixed number:
\[
3 \frac{5}{12}
\]
### h. \( 8 \frac{1}{5} - 2 \frac{3}{9} + 1 \frac{1}{7} \)
1. Convert each mixed number to an improper fraction:
- \( 8 \frac{1}{5} = \frac{8 \times 5 + 1}{5} = \frac{41}{5} \)
- \( 2 \frac{3}{9} = \frac{2 \times 9 + 3}{9} = \frac{21}{9} \)
- \( 1 \frac{1}{7} = \frac{1 \times 7 + 1}{7} = \frac{8}{7} \)
2. Find a common denominator (which is 315):
- Convert \( \frac{41}{5} = \frac{41 \times 63}{5 \times 63} = \frac{2583}{315} \)
- Convert \( \frac{21}{9} = \frac{21 \times 35}{9 \times 35} = \frac{735}{315} \)
- Convert \( \frac{8}{7} = \frac{8 \times 45}{7 \times 45} = \frac{360}{315} \)
3. Combine:
\[
\frac{2583}{315} - \frac{735}{315} + \frac{360}{315} = \frac{2208}{315}
\]
4. Convert back to a mixed number:
\[
7 \frac{1}{105}
\]
### Final Answers:
- b. \( 11 \frac{5}{24} \)
- d. \( 6 \frac{2}{15} \)
- f. \( 3 \frac{5}{12} \)
- h. \( 7 \frac{1}{105} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución