Pregunta
upstudy study bank question image url

ee sides of a rectangular paddock are to be fenced, the fourth side being an existing straight er drain. If 1000 m of fencing is available, what dimensions should be used for the paddock to cimise its area?

Ask by Brewer Valdez. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To maximize the area of the paddock, make it 500 meters long and 250 meters wide.

Solución

To maximize the area of the rectangular paddock with three sides fenced and one side (the drain) open, we can follow these steps: 1. **Define Variables:** - Let \( L \) be the length of the paddock parallel to the drain. - Let \( W \) be the width of the paddock perpendicular to the drain. 2. **Perimeter Constraint:** Since only three sides need fencing: \[ L + 2W = 1000 \text{ meters} \] Solving for \( L \): \[ L = 1000 - 2W \] 3. **Area to Maximize:** The area \( A \) of the rectangle is: \[ A = L \times W = (1000 - 2W) \times W = 1000W - 2W^2 \] 4. **Optimization:** To find the maximum area, take the derivative of \( A \) with respect to \( W \) and set it to zero: \[ \frac{dA}{dW} = 1000 - 4W = 0 \] Solving for \( W \): \[ W = 250 \text{ meters} \] Substitute \( W = 250 \) meters back into the perimeter equation to find \( L \): \[ L = 1000 - 2(250) = 500 \text{ meters} \] 5. **Conclusion:** The dimensions that maximize the area of the paddock are: - **Length (\( L \))**: 500 meters - **Width (\( W \))**: 250 meters **Thus, to maximize the area, the paddock should be 500 m long and 250 m wide.**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To maximize the area of the paddock using the 1000 m of fencing with three sides fenced and one side against the drain, you can use calculus. Let’s denote the lengths of the two sides perpendicular to the drain as \( x \), and the side parallel to the drain as \( y \). The perimeter constraint can be expressed as \( 2x + y = 1000 \). Rearranging gives \( y = 1000 - 2x \). The area \( A \) can be expressed as \( A = x \cdot y = x(1000 - 2x) = 1000x - 2x^2 \). To find the maximum area, take the derivative of the area with respect to \( x \), set it equal to zero, and solve for \( x \). To ensure your dimensions are practical and your fencing well-optimized, remember that real-world factors such as the terrain's slope and the ground's stability can affect how well the fencing holds up. Engaging with local agricultural experts or vets can also provide valuable insights on maintaining a safe and secure environment for any animals you may have planned for the paddock.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad