Responder
\[
\cos 75^{\circ} + \cos 15^{\circ} = \frac{\sqrt{6}}{2}
\]
\[
\text{General solution for } 1 + 4 \sin^2 x - 5 \sin x + \cos 2x = 0: \quad x = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z}
\]
\[
\frac{\sin 2A}{1 + \cos 2A} = \tan A
\]
\[
\frac{\sin(450^{\circ} - x) \tan(x - 180^{\circ}) \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ} \sin(-x)} = -\frac{\sin x \cdot \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ}}
\]
Solución
Verify the identity by following steps:
- step0: Verify:
\(\frac{\frac{\sqrt{6}}{2}}{1+\frac{\sqrt{6}}{2}}=\tan\left(A\right)\)
- step1: Choose a side to work on:
\(\frac{\sqrt{6}}{2+\sqrt{6}}=\tan\left(A\right)\)
- step2: Verify the identity:
\(\textrm{false}\)
Solve the equation \( 1+4y^2-5y+\frac{1-\cos(2x)}{2}=0 \).
Solve the equation by following steps:
- step0: Solve for \(y\):
\(1+4y^{2}-5y+\frac{1-\cos\left(2x\right)}{2}=0\)
- step1: Multiply both sides of the equation by LCD:
\(\left(1+4y^{2}-5y+\frac{1-\cos\left(2x\right)}{2}\right)\times 2=0\times 2\)
- step2: Simplify the equation:
\(3+8y^{2}-10y-\cos\left(2x\right)=0\)
- step3: Simplify:
\(3-\cos\left(2x\right)+8y^{2}-10y=0\)
- step4: Rewrite in standard form:
\(8y^{2}-10y+3-\cos\left(2x\right)=0\)
- step5: Solve using the quadratic formula:
\(y=\frac{10\pm \sqrt{\left(-10\right)^{2}-4\times 8\left(3-\cos\left(2x\right)\right)}}{2\times 8}\)
- step6: Simplify the expression:
\(y=\frac{10\pm \sqrt{\left(-10\right)^{2}-4\times 8\left(3-\cos\left(2x\right)\right)}}{16}\)
- step7: Simplify the expression:
\(y=\frac{10\pm \sqrt{4+32\cos\left(2x\right)}}{16}\)
- step8: Simplify the expression:
\(y=\frac{10\pm 2\sqrt{1+8\cos\left(2x\right)}}{16}\)
- step9: Separate into possible cases:
\(\begin{align}&y=\frac{10+2\sqrt{1+8\cos\left(2x\right)}}{16}\\&y=\frac{10-2\sqrt{1+8\cos\left(2x\right)}}{16}\end{align}\)
- step10: Simplify the expression:
\(\begin{align}&y=\frac{5+\sqrt{1+8\cos\left(2x\right)}}{8}\\&y=\frac{10-2\sqrt{1+8\cos\left(2x\right)}}{16}\end{align}\)
- step11: Simplify the expression:
\(\begin{align}&y=\frac{5+\sqrt{1+8\cos\left(2x\right)}}{8}\\&y=\frac{5-\sqrt{1+8\cos\left(2x\right)}}{8}\end{align}\)
Determine whether the expression \( \frac{\sin(2A)}{1+\cos(2A)}=\tan A \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\frac{\sin\left(2A\right)}{1+\cos\left(2A\right)}=\tan\left(A\right)\)
- step1: Choose a side to work on:
\(\tan\left(A\right)=\tan\left(A\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Let's solve each part of the problem step by step.
### 5.1 Prove that \(\cos 75^{\circ}+\cos 15^{\circ}=\frac{\sqrt{6}}{2}\)
To prove this, we can use the cosine addition formula:
\[
\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
\]
Let \(A = 75^{\circ}\) and \(B = 15^{\circ}\):
\[
\cos 75^{\circ} + \cos 15^{\circ} = 2 \cos\left(\frac{75^{\circ} + 15^{\circ}}{2}\right) \cos\left(\frac{75^{\circ} - 15^{\circ}}{2}\right)
\]
Calculating the angles:
\[
\frac{75^{\circ} + 15^{\circ}}{2} = \frac{90^{\circ}}{2} = 45^{\circ}
\]
\[
\frac{75^{\circ} - 15^{\circ}}{2} = \frac{60^{\circ}}{2} = 30^{\circ}
\]
Thus, we have:
\[
\cos 75^{\circ} + \cos 15^{\circ} = 2 \cos(45^{\circ}) \cos(30^{\circ})
\]
Now substituting the known values:
\[
\cos(45^{\circ}) = \frac{\sqrt{2}}{2}, \quad \cos(30^{\circ}) = \frac{\sqrt{3}}{2}
\]
So,
\[
\cos 75^{\circ} + \cos 15^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}
\]
Thus, the statement is proven.
### 5.2 Determine the general solution of \(1+4 \sin^2 x - 5 \sin x + \cos 2x = 0\)
Using the identity \(\cos 2x = 1 - 2\sin^2 x\), we can rewrite the equation:
\[
1 + 4 \sin^2 x - 5 \sin x + (1 - 2 \sin^2 x) = 0
\]
This simplifies to:
\[
2 + 2 \sin^2 x - 5 \sin x = 0
\]
Dividing the entire equation by 2:
\[
1 + \sin^2 x - \frac{5}{2} \sin x = 0
\]
Let \(y = \sin x\):
\[
y^2 - \frac{5}{2}y + 1 = 0
\]
Now, we can solve this quadratic equation using the quadratic formula:
\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}
\]
Calculating the discriminant:
\[
\left(\frac{5}{2}\right)^2 - 4 = \frac{25}{4} - 4 = \frac{25}{4} - \frac{16}{4} = \frac{9}{4}
\]
Thus,
\[
y = \frac{\frac{5}{2} \pm \frac{3}{2}}{2} = \frac{8/2}{2} \text{ or } \frac{2/2}{2} = 2 \text{ or } \frac{1}{2}
\]
Since \(\sin x\) must be between -1 and 1, we discard \(y = 2\) and keep \(y = \frac{1}{2}\).
The general solution for \(\sin x = \frac{1}{2}\) is:
\[
x = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z}
\]
### 5.3 Prove the identity \(\frac{\sin 2A}{1+\cos 2A}=\tan A\)
Using the double angle formulas:
\[
\sin 2A = 2 \sin A \cos A, \quad \cos 2A = 1 - 2 \sin^2 A
\]
Substituting these into the left side:
\[
\frac{2 \sin A \cos A}{1 + (1 - 2 \sin^2 A)} = \frac{2 \sin A \cos A}{2 - 2 \sin^2 A} = \frac{2 \sin A \cos A}{2(1 - \sin^2 A)} = \frac{\sin A \cos A}{1 - \sin^2 A} = \frac{\sin A \cos A}{\cos^2 A} = \tan A
\]
Thus, the identity is proven.
### 5.4 Simplify \(\frac{\sin(450^{\circ}-x) \tan(x-180^{\circ}) \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ} \sin(-x)}\)
First, simplify each component:
- \(\sin(450^{\circ} - x) = \sin(90^{\circ} - x) = \cos x\)
- \(\tan(x - 180^{\circ}) = \tan x\)
- \(\sin(-x) = -\sin x\)
Now substituting these into the expression:
\[
\frac{\cos x \tan x \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ} (-\sin x)} = -\frac{\cos x \cdot \frac{\sin x}{\cos x} \cdot \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ}} = -\frac{\sin x \cdot \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ}}
\]
Thus, the simplified expression is:
\[
-\frac{\sin x \cdot \sin 23^{\circ} \cos 23^{\circ}}{\cos 44^{\circ}}
\]
This concludes the solutions for all parts of the problem.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución