Find the area of the surface generated by revolving the curve \( y=\sqrt{2 x-x^{2}}, 0.25 \leq x \leq 1 \), about the \( x \)-axis. The area of the surface generated is \( \square \) square units. (Type an exact answer, using \( \pi \) as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the area of the surface generated by revolving the curve \( y = \sqrt{2x - x^2} \) around the \( x \)-axis, we can use the formula for the surface area of revolution: \[ S = 2\pi \int_a^b y \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} \, dx \] First, we need to compute \( \frac{dy}{dx} \): Given \( y = \sqrt{2x - x^2} \), we can differentiate it using the chain rule: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{2x - x^2}}(2 - 2x) = \frac{1 - x}{\sqrt{2x - x^2}} \] Next, we need to simplify \( \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} \): \[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{1 - x}{\sqrt{2x - x^2}}\right)^2 = \frac{(1 - x)^2}{2x - x^2} \] So, \[ \left(\frac{dy}{dx}\right)^2 + 1 = \frac{(1 - x)^2}{2x - x^2} + 1 = \frac{(1 - x)^2 + (2x - x^2)}{2x - x^2} = \frac{1 - 2x + x^2 + 2x - x^2}{2x - x^2} = \frac{1}{2x - x^2} \] Thus, \[ \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} = \frac{1}{\sqrt{2x - x^2}} \] Now we can substitute this into our surface area integral: \[ S = 2\pi \int_{0.25}^{1} y \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} \, dx = 2\pi \int_{0.25}^{1} \sqrt{2x - x^2} \cdot \frac{1}{\sqrt{2x - x^2}} \, dx = 2\pi \int_{0.25}^{1} 1 \, dx \] Now we compute the integral: \[ S = 2\pi \left[ x \right]_{0.25}^{1} = 2\pi \left(1 - 0.25\right) = 2\pi \cdot 0.75 = \frac{3\pi}{2} \] Therefore, the area of the surface generated is \[ \frac{3\pi}{2} \text{ square units.} \]
