Use the Comparison Test to determine whether the series converges. \( \sum_{k=1}^{\infty} \frac{1}{k^{\frac{7}{4}}+2} \) The Comparison Test with \( \sum_{k=1}^{\infty} \square \) shows that the series
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To apply the Comparison Test, we can compare the given series \( \sum_{k=1}^{\infty} \frac{1}{k^{\frac{7}{4}}+2} \) to the series \( \sum_{k=1}^{\infty} \frac{1}{k^{\frac{7}{4}}} \). Since \( k^{\frac{7}{4}} + 2 > k^{\frac{7}{4}} \), we can conclude that \( \frac{1}{k^{\frac{7}{4}} + 2} < \frac{1}{k^{\frac{7}{4}}} \) for all \( k \geq 1 \). The series \( \sum_{k=1}^{\infty} \frac{1}{k^{\frac{7}{4}}} \) converges, as it is a p-series with \( p = \frac{7}{4} > 1 \). Thus, by the Comparison Test, since our series is bounded above by a convergent series, we conclude that \( \sum_{k=1}^{\infty} \frac{1}{k^{\frac{7}{4}}+2} \) also converges.
preguntas relacionadas
