Pregunta

\( (a+b)(a+c)(b+c)\geq 8abc \)

Ask by Cervantes Watkins. in Iran
Jan 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inequality \( (a + b)(a + c)(b + c) \geq 8abc \) holds true for all positive real numbers \( a, b, \) and \( c \). Equality occurs when \( a = b = c \).

Solución

The inequality you've provided, \[ (a + b)(a + c)(b + c) \geq 8abc, \] is a well-known result in algebra, often proven using the **Arithmetic Mean-Geometric Mean (AM-GM) Inequality**. This inequality holds for all **positive real numbers** \( a, b, \) and \( c \). Let's delve into the proof and understand the conditions for equality. ### **Proof Using AM-GM Inequality** The **AM-GM Inequality** states that for any non-negative real numbers, the arithmetic mean is always greater than or equal to the geometric mean. Specifically, for two positive numbers \( x \) and \( y \): \[ \frac{x + y}{2} \geq \sqrt{xy}, \] with equality if and only if \( x = y \). Let's apply this to each pair in your inequality: 1. **First Pair (\( a \) and \( b \)):** \[ a + b \geq 2\sqrt{ab} \] 2. **Second Pair (\( a \) and \( c \)):** \[ a + c \geq 2\sqrt{ac} \] 3. **Third Pair (\( b \) and \( c \)):** \[ b + c \geq 2\sqrt{bc} \] Now, multiply these three inequalities together: \[ (a + b)(a + c)(b + c) \geq (2\sqrt{ab})(2\sqrt{ac})(2\sqrt{bc}) = 8abc \] This directly leads to: \[ (a + b)(a + c)(b + c) \geq 8abc \] ### **Conditions for Equality** The equality in the AM-GM Inequality holds **if and only if** all the paired terms are equal. In the context of your inequality, equality occurs when: \[ a = b = c \] **Example:** Let's verify with \( a = b = c = 1 \): \[ (1 + 1)(1 + 1)(1 + 1) = 2 \times 2 \times 2 = 8 \] \[ 8abc = 8 \times 1 \times 1 \times 1 = 8 \] Both sides are equal, confirming that the equality condition holds when \( a = b = c \). ### **Conclusion** The inequality \[ (a + b)(a + c)(b + c) \geq 8abc \] is always true for positive real numbers \( a, b, \) and \( c \), with equality if and only if \( a = b = c \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

This inequality, often linked to symmetric polynomials, shows its roots in the theory of inequalities. It reveals that the product of sums of variables can hint at their collective combinations reaching a threshold defined by individual products. A classic application of this is in proving inequalities in competition math or optimizing resource allocation in economics where variables can affect the overall outcome. To tackle this inequality effectively, consider using the AM-GM inequality. First, apply AM-GM to the terms \( (a+b) \), \( (b+c) \), and \( (c+a) \). A common mistake is assuming equality holds effortlessly; remember that AM-GM achieves equality only when all variables involved are equal. Thus, ensuring \( a = b = c \) clarifies the outcome and aids in understanding how these products relate, especially when examining edge cases of variable values.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad