Pregunta
upstudy study bank question image url

5. A class consists of 8 men and 7 ladien, Two students were selected randomlyle represent the class in a debate. Find the probability that the two students selected are: (a) both ladies; (b) both men; (c) of the same sex; (d) of different sexes.

Ask by Fitzgerald Wells. in Nigeria
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Probability both selected students are ladies: 1/5 - Probability both selected students are men: 4/15 - Probability both students are of the same sex: 7/15 - Probability students are of different sexes: 8/15

Solución

To solve this problem, we first determine the total number of ways to select 2 students from the class. There are 8 men and 7 ladies, so the total number of students is 15. Step 1: Calculate the total number of ways to choose 2 students from 15.   Total ways = C(15, 2) = (15 × 14) / 2 = 105 (a) Probability that both selected students are ladies:   Number of ways to choose 2 ladies = C(7, 2) = (7 × 6) / 2 = 21   Probability = 21 / 105 = 1/5 (b) Probability that both selected students are men:   Number of ways to choose 2 men = C(8, 2) = (8 × 7) / 2 = 28   Probability = 28 / 105 = 4/15 (c) Probability that the two students are of the same sex:   This can happen if both are ladies or both are men.   Total favorable ways = 21 (both ladies) + 28 (both men) = 49   Probability = 49 / 105 = 7/15 (d) Probability that the two students are of different sexes:   This means one is a lady and one is a man.   Number of ways = 7 (ladies) × 8 (men) = 56   Probability = 56 / 105 = 8/15 Thus, the answers are:   (a) 1/5   (b) 4/15   (c) 7/15   (d) 8/15

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this problem, we need to calculate the probabilities based on the total number of possible selections and the specific desired outcomes. The total number of students in the class is \(8 + 7 = 15\). For part (a), the probability of selecting both ladies requires calculating the number of ways to choose 2 ladies from 7 out of the total ways to choose 2 students from 15: \[ P(\text{both ladies}) = \frac{\binom{7}{2}}{\binom{15}{2}} = \frac{21}{105} = \frac{1}{5}. \] For part (b), we find the probability of selecting both men from the 8 available: \[ P(\text{both men}) = \frac{\binom{8}{2}}{\binom{15}{2}} = \frac{28}{105} = \frac{4}{15}. \] For part (c), we need the probability of selecting two students of the same sex, which includes both ladies and both men: \[ P(\text{same sex}) = P(\text{both ladies}) + P(\text{both men}) = \frac{1}{5} + \frac{4}{15}. \] Finding a common denominator (15), this gives us: \[ P(\text{same sex}) = \frac{3}{15} + \frac{4}{15} = \frac{7}{15}. \] Finally, for part (d), we calculate the probability of selecting students of different sexes. This can be done using the total probability and subtracting the probability of selecting students of the same sex: \[ P(\text{different sexes}) = 1 - P(\text{same sex}) = 1 - \frac{7}{15} = \frac{8}{15}. \] To summarize: (a) Probability both ladies: \(\frac{1}{5}\) (b) Probability both men: \(\frac{4}{15}\) (c) Probability same sex: \(\frac{7}{15}\) (d) Probability different sexes: \(\frac{8}{15}\)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad