Pregunta
upstudy study bank question image url

\( \left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right] \) find the Rank of matrix

Ask by Sanders Lindsey. in India
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The rank of the matrix is 3.

Solución

Find the inverse matrix of \( \begin{bmatrix}1 & 1 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrr}{1}&{1}&{2}\\{3}&{2}&{1}\\{1}&{2}&{3}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{3}&{2}&{1}&{0}&{1}&{0}\\{1}&{2}&{3}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{-1}&{-5}&{-3}&{1}&{0}\\{1}&{2}&{3}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{-1}&{-5}&{-3}&{1}&{0}\\{0}&{1}&{1}&{-1}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{1}&{5}&{3}&{-1}&{0}\\{0}&{1}&{1}&{-1}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{1}&{5}&{3}&{-1}&{0}\\{0}&{0}&{-4}&{-4}&{1}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{1}&{5}&{3}&{-1}&{0}\\{0}&{0}&{1}&{1}&{-\frac{1}{4}}&{-\frac{1}{4}}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{2}&{1}&{0}&{0}\\{0}&{1}&{0}&{-2}&{\frac{1}{4}}&{\frac{5}{4}}\\{0}&{0}&{1}&{1}&{-\frac{1}{4}}&{-\frac{1}{4}}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{-1}&{\frac{1}{2}}&{\frac{1}{2}}\\{0}&{1}&{0}&{-2}&{\frac{1}{4}}&{\frac{5}{4}}\\{0}&{0}&{1}&{1}&{-\frac{1}{4}}&{-\frac{1}{4}}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{\frac{1}{4}}&{-\frac{3}{4}}\\{0}&{1}&{0}&{-2}&{\frac{1}{4}}&{\frac{5}{4}}\\{0}&{0}&{1}&{1}&{-\frac{1}{4}}&{-\frac{1}{4}}\end{array}\right]\) - step10: Write the right half matrix: \(\left[\begin{array}{rrr}{1}&{\frac{1}{4}}&{-\frac{3}{4}}\\{-2}&{\frac{1}{4}}&{\frac{5}{4}}\\{1}&{-\frac{1}{4}}&{-\frac{1}{4}}\end{array}\right]\) The inverse of the given matrix is: \[ \left[\begin{array}{rrr}1 & \frac{1}{4} & -\frac{3}{4} \\ -2 & \frac{1}{4} & \frac{5}{4} \\ 1 & -\frac{1}{4} & -\frac{1}{4}\end{array}\right] \] The rank of a matrix is the maximum number of linearly independent rows or columns in the matrix. In this case, the rank of the given matrix is 3, as all rows are linearly independent.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the rank of the given matrix, we begin by reducing it to its row echelon form (REF) or reduced row echelon form (RREF). The given matrix is: \[ \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \] We can perform row operations. Starting with the first row, we can eliminate the leading coefficients in the second and third rows. 1. Subtract 3 times the first row from the second row: \[ R_2 \rightarrow R_2 - 3R_1 \Rightarrow 3 - 3(1), 2 - 3(1), 1 - 3(2) \Rightarrow [0, -1, -5] \] 2. Subtract the first row from the third row: \[ R_3 \rightarrow R_3 - R_1 \Rightarrow 1 - 1, 2 - 1, 3 - 2 \Rightarrow [0, 1, 1] \] Now, the matrix looks like this: \[ \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -5 \\ 0 & 1 & 1 \end{bmatrix} \] Next, we can simplify the second row by multiplying it by -1, and then eliminate the leading coefficient in the third row: 3. Multiply the second row by -1: \[ R_2 \rightarrow -R_2 \Rightarrow [0, 1, 5] \] Now we have: \[ \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 5 \\ 0 & 1 & 1 \end{bmatrix} \] 4. Subtract the second row from the third row: \[ R_3 \rightarrow R_3 - R_2 \Rightarrow [0, 1 - 1, 1 - 5] \Rightarrow [0, 0, -4] \] Now the matrix is: \[ \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & -4 \end{bmatrix} \] Since there are three non-zero rows, the rank of the matrix is 3. Thus, the rank of the given matrix is **3**.

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad