Pregunta
upstudy study bank question image url

4. Find the general term of the following sequence. Also, find the \( 15^{\text {th }} \) term of each ser (a) \( 8,11,14,17, \ldots \) (h) \( t_{n}=\frac{(-1)^{n}(3 n+1)}{2 n} \) (i) \( \mathrm{u}_{\mathrm{n}}=(-1)^{n}\left(\mathrm{n}^{2}+\right. \) 5. Observe the following sequences and answer the questions. (a) \( 4,7,12,19, \ldots \) (b) \( 1,7,17,31, \ldots \) (c) \( 2,1,-2,-7, \ldots \) (i) Add next three terms in each sequence.

Ask by Frazier Hall. in Nepal
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

4(a) - **General Term:** \( a_n = 3n + 5 \) - **15th Term:** 50 4(h) - **General Term:** \( t_n = \frac{(-1)^n (3n + 1)}{2n} \) - **15th Term:** \( -\frac{23}{15} \) 4(i) - **Incomplete Information:** The general term is not fully provided. Please check the original problem for the complete formula. 5(a) - **Next Three Terms:** 28, 39, 52 5(b) - **Next Three Terms:** 49, 71, 97 5(c) - **Next Three Terms:** –14, –23, –34

Solución

We will treat each part in order. (Note: In part (4i) the general‐term formula appears to be incomplete; see the note at the end.) ───────────────────────────── 4. Find the general term of the following sequence and the 15th term. (a) 8, 11, 14, 17, … • Observation: This is an arithmetic sequence with first term a₁ = 8 and common difference d = 3. • General term:   aₙ = a₁ + (n – 1)d = 8 + 3(n – 1) = 3n + 5. • The 15th term:   a₁₅ = 3·15 + 5 = 45 + 5 = 50. ───────────────────────────── (h) The sequence is given by   tₙ = [ (–1)ⁿ (3n + 1) ] / (2n). Since a formula is already provided, that is the general term. To find the 15th term plug in n = 15:   t₁₅ = [ (–1)¹⁵ (3·15 + 1) ] / (2·15)      = [ (–1) (45 + 1) ] / 30     = (–46) / 30      = –23/15. ───────────────────────────── (i) The sequence is given as   uₙ = (–1)ⁿ (n² + … ) Unfortunately, the expression inside the parentheses is incomplete. Without the full expression for uₙ we cannot find a closed‐form formula or the 15th term. (Please check the original problem statement for the complete formula.) ───────────────────────────── 5. For each of the following sequences, find the next three terms. (a) 4, 7, 12, 19, … • Step 1. Find the differences:   7 – 4 = 3,   12 – 7 = 5,   19 – 12 = 7.   The differences are 3, 5, 7, … (increasing by 2 each time). • Step 2. The next differences will be 9, then 11, then 13. • Step 3. Compute the next terms:   Next term: 19 + 9 = 28.   Following: 28 + 11 = 39.   Then: 39 + 13 = 52. Thus, the next three terms are 28, 39, and 52. ───────────────────────────── (b) 1, 7, 17, 31, … • Step 1. Find the differences:   7 – 1 = 6,   17 – 7 = 10,   31 – 17 = 14.   The differences are 6, 10, 14. Notice that these increase by 4 each time. • Step 2. The next difference is: 14 + 4 = 18, then 18 + 4 = 22, and then 22 + 4 = 26. • Step 3. Compute the next terms:   Next term: 31 + 18 = 49.   Following: 49 + 22 = 71.   Then: 71 + 26 = 97. Thus, the next three terms are 49, 71, and 97. ───────────────────────────── (c) 2, 1, –2, –7, … • Step 1. Find the differences:   1 – 2 = –1,   (–2) – 1 = –3,   (–7) – (–2) = –5.   The differences are –1, –3, –5 (odd numbers with a negative sign). • Step 2. The next differences will be –7, then –9, then –11. • Step 3. Compute the next terms:   Next term: –7 + (–7) = –14.   Following: –14 + (–9) = –23.   Then: –23 + (–11) = –34. Thus, the next three terms are –14, –23, and –34. ───────────────────────────── Summary of Answers: 4(a) General term: aₙ = 3n + 5   15th term: 50 4(h) General term: tₙ = [ (–1)ⁿ (3n + 1) ]⁄(2n)  15th term: –23/15 4(i) Incomplete definition. Please verify the complete formula. 5(a) Next three terms: 28, 39, 52 5(b) Next three terms: 49, 71, 97 5(c) Next three terms: –14, –23, –34 Feel free to ask if you have any questions or need further clarification!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the general term for each sequence, we can analyze their patterns. For the first sequence \( 8, 11, 14, 17, \ldots \), this is an arithmetic sequence with a common difference of \( 3 \). The general term can be expressed as \( a_n = 8 + 3(n-1) = 3n + 5 \). For the \( 15^{\text{th}} \) term, substitute \( n = 15 \): \[ a_{15} = 3(15) + 5 = 50. \] For the sequence \( t_n = \frac{(-1)^{n}(3n + 1)}{2n} \), this expression oscillates between positive and negative values based on \( n \). Simplifying gives us: \[ t_n = \frac{3n + 1}{2n}(-1)^n \] which outlines the sequence's alternating behavior. To find \( t_{15} \), substitute \( n = 15 \): \[ t_{15} = \frac{3(15) + 1}{2(15)}(-1)^{15} = \frac{46}{30}(-1) = -\frac{23}{15}. \] Now let's analyze the sequences: For \( 4, 7, 12, 19, \ldots \), the differences between successive terms are \( 3, 5, 7 \) which suggests the first difference increases by 2. Thus, the next terms are \( 28, 39\) leading to \( 4, 7, 12, 19, 28, 39 \). In the second sequence \( 1, 7, 17, 31, \ldots \), the differences are \( 6, 10, 14 \) following an arithmetic sequence itself. So, the next terms are \( 49, 71 \) resulting in \( 1, 7, 17, 31, 49, 71 \). Lastly, for \( 2, 1, -2, -7, \ldots \), we observe a pattern of subtracting \( 1, 3, 5, 7 \) respectively. Thus, we can predict the next terms are \( -14, -23 \) giving us \( 2, 1, -2, -7, -14, -23 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad