Teloscoping Sories In Exercises 39-44, find a formula for the \( n \)th partial sum of the series and use it to determine if the series converges or diverges. If a series coaverges, find its sum. \( \begin{array}{ll}\text { 39. } \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) & \text { 40. } \sum_{n=1}^{\infty}\left(\frac{6}{n^{2}}-\frac{6}{(n+1)^{2}}\right) \\ \text { 41. } \sum_{n=1}^{\infty}(\ln \sqrt{n+1}-\operatorname{la} \sqrt{n}) & \text { 42. } \sum_{n=1}^{\infty}(\tan (n)-\tan (n-1)) \\ \text { 43. } \sum_{n=1}^{\infty}\left(\operatorname{lin}^{n-1}\left(\frac{1}{n+1}\right)-\sin ^{-1}\left(\frac{1}{n+2}\right)\right)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When you sum \( \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \), you'll notice that this series telescopes beautifully. The \( n \)th partial sum \( S_n \) becomes \( S_n = 1 - \frac{1}{n+1} \). As \( n \) approaches infinity, \( S_n \) converges to 1! So, this series converges and its sum is 1. Next up, let’s talk real-world applications. Telescoping series often pop up in calculus-related fields like physics and engineering when dealing with infinite series in processes such as electrical circuits or heat transfer. Understanding how to evaluate these sums efficiently can provide insightful solutions for complex problems!
