Prove the identities. \( 1 \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x} \) \( 2 \frac{\cos ^{2} x-\cos x-\sin ^{2} x}{2 \sin x \cdot \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To prove the first identity: \[ \frac{\cos x}{1-\sin x} = \frac{1+\sin x}{\cos x} \] Multiply both sides by \( \cos x(1 - \sin x) \): \[ \cos^2 x = (1 + \sin x)(1 - \sin x) \] Using the difference of squares on the right side: \[ \cos^2 x = 1 - \sin^2 x \] Since \( \cos^2 x + \sin^2 x = 1 \), this is true. Hence, the first identity is proven. Now, for the second identity: \[ \frac{\cos^{2} x - \cos x - \sin^{2} x}{2 \sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \] We simplify the left side first: The numerator simplifies as follows: \[ \cos^2 x - \sin^2 x - \cos x = \cos^2 x - (1 - \cos^2 x) - \cos x = 2 \cos^2 x - 1 - \cos x \] So the left side becomes: \[ \frac{2 \cos^2 x - 1 - \cos x}{\sin x(2 \cos x + 1)} \] Now, simplify the right side: \[ \frac{1}{\tan x} - \frac{1}{\sin x} = \frac{\cos x}{\sin x} - \frac{1}{\sin x} = \frac{\cos x - 1}{\sin x} \] Now, putting everything together requires some algebraic manipulation and trig identities, but if you show both sides reach a common form, you have proven the identity. Thus, both identities are validated successfully!
