Pregunta
upstudy study bank question image url

A fair die is rolled 5 times. What is the probability of having no 1 and no 5 among the rolls? Round your answer to three decimal places.

Ask by Black Turnbull. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of not rolling a 1 or 5 in 5 rolls is approximately 0.132.

Solución

For each roll, we need to avoid the numbers 1 and 5. This leaves us with the outcomes 2, 3, 4, and 6, which means there are 4 favorable outcomes per roll. The probability for one roll is:   4 favorable outcomes / 6 total outcomes = 4/6 = 2/3. Since the rolls are independent, the probability of avoiding 1 and 5 in all 5 rolls is:   (2/3)^5 = 32/243 ≈ 0.132. Thus, the probability that no roll results in a 1 or a 5 is approximately 0.132.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability of rolling no 1s and no 5s when rolling a fair die 5 times, we first determine the possible outcomes for a single roll. Since we're avoiding 1s and 5s, we only have the numbers 2, 3, 4, and 6 available — that's 4 possible outcomes. The total number of outcomes for one roll of a die is 6. Therefore, the probability of rolling either a 1 or a 5 is: \[ P(\text{1 or 5}) = \frac{2}{6} = \frac{1}{3} \] Thus, the probability of not rolling a 1 or a 5 (rolling a 2, 3, 4, or 6) in a single roll is: \[ P(\text{not 1 and not 5}) = 1 - P(\text{1 or 5}) = 1 - \frac{1}{3} = \frac{2}{3} \] Next, since the die is rolled 5 times, we raise the probability of a single successful outcome to the power of the number of rolls: \[ P(\text{no 1s and no 5s in 5 rolls}) = \left(\frac{2}{3}\right)^5 \] Calculating this gives: \[ P = \left(\frac{2}{3}\right)^5 = \frac{32}{243} \] To find this probability as a decimal, we calculate: \[ \frac{32}{243} \approx 0.131687 \] Rounding this to three decimal places, we get: **0.132**

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad