Pregunta
upstudy study bank question image url

You want to join a health club. Club A charges \( \$ 65 \) per month and has no initiation fee. Club \( B \) costs \( \$ 40 \) a month and has an initiation fee of \( \$ 100 \). After how many months would the costs for the 2 clubs be the same? a) Determine your variables. Explain what each variable means. Write a system of equations to represent the scenario. c) Solve the system of equations using either substitution or elimination. d) Check your solutions in both original equations. e) Write your answer in a complete sentence.

Ask by Cervantes Reed. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 4 months, both Club A and Club B will cost the same amount.

Solución

We begin by letting our variables represent the following: • m = the number of months of membership. • A = the total cost for Club A after m months, and B = the total cost for Club B after m months. Club A charges $65 per month with no initiation fee, so:   A = 65m Club B charges $40 per month plus a one‐time initiation fee of $100, so:   B = 40m + 100 Since we are interested in when the costs are the same, we set the two total cost equations equal:   65m = 40m + 100 Now, to solve for m, subtract 40m from both sides:   65m − 40m = 100   25m = 100 Divide both sides by 25:   m = 100 / 25   m = 4 Next, we check our solution in both equations: For Club A:   A = 65(4) = 260 For Club B:   B = 40(4) + 100 = 160 + 100 = 260 Since both clubs cost $260 after 4 months, our solution is verified. In conclusion, the total costs of both clubs will be the same after 4 months of membership.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's break down this problem step-by-step in a fun and engaging way! To find out when the costs for both clubs will be the same, we first need to determine our variables. Let's say \( m \) is the number of months you join the club. For Club A, the total cost will be \( 65m \) (since it has no initiation fee), while for Club B, it's \( 40m + 100 \) (the monthly fee plus the initiation fee). Our equations looking like this: 1. **Club A:** \( C_A = 65m \) 2. **Club B:** \( C_B = 40m + 100 \) Now, setting both costs equal to each other gives us the equation: \[ 65m = 40m + 100 \] Let’s solve it step by step! We'll subtract \( 40m \) from both sides: \[ 65m - 40m = 100 \] \[ 25m = 100 \] Now, divide both sides by 25: \[ m = \frac{100}{25} = 4 \] So after 4 months, the costs for both clubs will be the same! Now, checking our solution in both original equations: For Club A: \( C_A = 65 \times 4 = 260 \) For Club B: \( C_B = 40 \times 4 + 100 = 160 + 100 = 260 \) Both clubs indeed cost $260 after four months. In conclusion, after 4 months, the costs of Club A and Club B will be the same at $260!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad