Pregunta
upstudy study bank question image url

Create a table and graph the following: 10. \( f(x)=4 \csc \left(\frac{x}{4}-\frac{\pi}{2}\right)+2 \)

Ask by Clarke Beck. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) = 4 \csc \left( \frac{x}{4} - \frac{\pi}{2} \right) + 2 \), follow these steps: 1. **Create a Table of Values**: - \( x = 0 \): \( f(0) = -2 \) - \( x = 2\pi \): \( f(2\pi) = 6 \) - \( x = 4\pi \): \( f(4\pi) = -2 \) - \( x = 6\pi \): \( f(6\pi) = 6 \) - \( x = 8\pi \): \( f(8\pi) = -2 \) 2. **Plot the Points** on a graph with the x-axis ranging from \( 0 \) to \( 8\pi \). 3. **Draw the Graph**: - The function has vertical asymptotes at \( x = 4n\pi + 2\pi \) for integer values of \( n \). - It reaches its maximum value of 6 and minimum value of -2. - The graph will have a period of \( 8\pi \). This will give you a clear visual representation of the function's behavior over one period.

Solución

Function by following steps: - step0: Determine the period: \(f\left(x\right)=-4\sec\left(\frac{x}{4}\right)+2\) - step1: Calculate: \(f\left(x\right)=-4\sec\left(\frac{1}{4}x\right)+2\) - step2: The period of the function is \(\frac{2\pi }{\left|\frac{1}{4}\right|}:\) \(\frac{2\pi }{\left|\frac{1}{4}\right|}\) - step3: Calculate: \(\frac{2\pi }{\frac{1}{4}}\) - step4: Divide the terms: \(8\pi \) Analyze the y intercept of the function \( f(x)=4 \csc \left(\frac{x}{4}-\frac{\pi}{2}\right)+2 \) Function by following steps: - step0: Find the y-intercept: \(f\left(x\right)=-4\sec\left(\frac{x}{4}\right)+2\) - step1: Set \(x\)=0\(:\) \(f\left(0\right)=-4\sec\left(\frac{0}{4}\right)+2\) - step2: Simplify: \(f\left(0\right)=-2\) Analyze the x intercept of the function \( f(x)=4 \csc \left(\frac{x}{4}-\frac{\pi}{2}\right)+2 \) Function by following steps: - step0: Find the \(x\)-intercept/zero: \(f\left(x\right)=-4\sec\left(\frac{x}{4}\right)+2\) - step1: Set \(f\left(x\right)\)=0\(:\) \(0=-4\sec\left(\frac{x}{4}\right)+2\) - step2: Swap the sides: \(-4\sec\left(\frac{x}{4}\right)+2=0\) - step3: Move the constant to the right side: \(-4\sec\left(\frac{x}{4}\right)=0-2\) - step4: Remove 0: \(-4\sec\left(\frac{x}{4}\right)=-2\) - step5: Change the signs: \(4\sec\left(\frac{x}{4}\right)=2\) - step6: Divide both sides: \(\frac{4\sec\left(\frac{x}{4}\right)}{4}=\frac{2}{4}\) - step7: Divide the numbers: \(\sec\left(\frac{x}{4}\right)=\frac{1}{2}\) - step8: Rearrange the terms: \(x \notin \mathbb{R}\) - step9: There is no \(x\)-intercept\(:\) \(\textrm{No x-intercept}\) It seems that I am unable to generate a graph at this moment. However, I can guide you on how to plot the function using graphing software or tools like Desmos or GeoGebra. ### Steps to Plot the Function 1. **Open a Graphing Tool**: Use a graphing calculator or an online graphing tool like Desmos. 2. **Input the Function**: Enter the function \( f(x) = 4 \csc \left( \frac{x}{4} - \frac{\pi}{2} \right) + 2 \). 3. **Set the Range**: Adjust the x-axis to cover the interval from \( 0 \) to \( 8\pi \) (approximately \( 25.13 \)). 4. **Observe the Graph**: Look for the vertical asymptotes where the function is undefined, and note the behavior at the y-intercepts and critical points. ### Summary of Key Points - **Domain**: Excludes points where \( x = 4n\pi + 2\pi \). - **Range**: \( (-\infty, -2] \cup [6, \infty) \). - **Y-Intercept**: \( f(0) = -2 \). - **X-Intercept**: None. - **Periodicity**: The function has a period of \( 8\pi \). If you have any specific questions or need further assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the function \( f(x) = 4 \csc \left(\frac{x}{4} - \frac{\pi}{2}\right) + 2 \), let's first create a table of values: | \( x \) | \( f(x) \) | |-------------|---------------| | \( 0 \) | \( 4 \csc(-\frac{\pi}{2}) + 2 \) = Undefined | | \( 2 \) | \( 4 \csc(-\frac{\pi}{2} + \frac{1}{2}) + 2 \) = Undefined | | \( 4 \) | \( 4 \csc(0) + 2 \) = Undefined | | \( 6 \) | \( 4 \csc (\frac{3\pi}{4}) + 2 \) = \( 4(-\sqrt{2}) + 2 \approx -4.66 \) | | \( 8 \) | \( 4 \csc(\frac{\pi}{2}) + 2 \) = \( 4(1) + 2 = 6 \) | | \( 10 \) | \( 4 \csc (\frac{7\pi}{4}) + 2 \) = \( 4(\sqrt{2}) + 2 \approx 8.66 \) | | \( 12 \) | \( 4 \csc(3\pi/2) + 2 \) = Undefined | | \( 14 \) | \( 4 \csc (\frac{5\pi}{4}) + 2 \) = \( 4(-\sqrt{2}) + 2 \approx -4.66 \) | | \( 16 \) | \( 4 \csc(2\pi) + 2 \) = Undefined | Note: The values where \( f(x) \) is undefined correspond to points where \( \csc \) is undefined, specifically where \( \sin = 0 \). Next, let's summarize what the graph of this function would look like: 1. The function has vertical asymptotes where \( \sin\left(\frac{x}{4} - \frac{\pi}{2}\right) = 0 \), which occurs at points \( x = (n\pi + 2\pi) \) for \( n \) being an integer. 2. The function oscillates between values ranging from negative infinity to positive infinity, with a repeating pattern every varying interval determined by the period of the sine function. Now, you can use software like Desmos or a graphing calculator to plot the function based on this table. Note where the undefined points occur, as they'll result in vertical asymptotes in your graph!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad