Pregunta
upstudy study bank question image url

Exo1: Let the series \( \sum h_{n} \) such as, \( \forall n \in \mathbb{N}, \forall x \in \mathbb{R}_{+} ; h_{n}(x)=(-1)^{n} \frac{n^{2}+x}{1} \) 1. Prove that que \( \sum h_{n} \) do not absolutely convergent at any point of \( \mathrm{R}+ \). 2. Prove that que \( \sum h_{n} \) converges uniformly on \( \mathrm{R}_{+} \) Voir : Asanalyse 1-2-3 Guelma.pdf exo1 page 372

Ask by Stuart Simmons. in Algeria
Nov 14,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series \( \sum h_{n} \) does not absolutely converge at any point of \( \mathbb{R}_{+} \) and converges uniformly on \( \mathbb{R}_{+} \).

Solución

To prove that the series \( \sum h_{n} \) does not absolutely converge at any point of \( \mathbb{R}_{+} \), we need to show that the series of the absolute values of the terms of the series does not converge. Given that \( h_{n}(x) = (-1)^{n} \frac{n^{2}+x}{1} \), we can find the absolute value of \( h_{n}(x) \) as \( |h_{n}(x)| = \left| (-1)^{n} \frac{n^{2}+x}{1} \right| = \frac{n^{2}+x}{1} \). Now, let's consider the series of the absolute values of the terms of the series: \[ \sum_{n=1}^{\infty} |h_{n}(x)| = \sum_{n=1}^{\infty} \frac{n^{2}+x}{1} \] To prove that this series does not converge, we can use the comparison test. We will compare this series with the series \( \sum_{n=1}^{\infty} n^{2} \), which is a divergent series. Since \( n^{2} \) grows faster than \( n^{2}+x \) for any fixed \( x \in \mathbb{R}_{+} \), the series \( \sum_{n=1}^{\infty} n^{2} \) diverges. Therefore, by the comparison test, the series \( \sum_{n=1}^{\infty} |h_{n}(x)| \) also diverges. Hence, the series \( \sum h_{n} \) does not absolutely converge at any point of \( \mathbb{R}_{+} \). Next, to prove that the series \( \sum h_{n} \) converges uniformly on \( \mathbb{R}_{+} \), we need to show that the limit of the partial sums of the series converges uniformly for all \( x \in \mathbb{R}_{+} \). Let's consider the partial sums of the series: \[ S_{n}(x) = \sum_{k=1}^{n} h_{k}(x) = \sum_{k=1}^{n} (-1)^{k} \frac{k^{2}+x}{1} \] To prove that the series converges uniformly, we need to show that the limit of the partial sums converges uniformly for all \( x \in \mathbb{R}_{+} \). Since the series \( \sum_{k=1}^{\infty} (-1)^{k} \frac{k^{2}+x}{1} \) converges, the limit of the partial sums converges uniformly for all \( x \in \mathbb{R}_{+} \). Therefore, the series \( \sum h_{n} \) converges uniformly on \( \mathbb{R}_{+} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To show that the series \( \sum h_n(x) \) does not converge absolutely at any point in \( \mathbb{R}_{+} \), consider the absolute term \( |h_n(x)| = n^2 + x \). The series of absolute terms is given by \( \sum |h_n(x)| = \sum_{n=1}^{\infty} (n^2 + x) \). Since the series \( \sum n^2 \) diverges, it follows that \( \sum |h_n(x)| \) diverges for all \( x \in \mathbb{R}_{+} \), confirming that \( \sum h_n \) does not converge absolutely anywhere on \( \mathbb{R}_{+} \). For uniform convergence on \( \mathbb{R}_{+} \), we can utilize the Weierstrass M-test. Note that \( h_n(x) = (-1)^n (n^2 + x) \). Define \( M_n = n^2 + 1 \), which is independent of \( x \) and satisfies \( |h_n(x)| \leq M_n \). The series \( \sum M_n \) diverges because it includes the divergent series \( \sum n^2 \), yet since \( h_n(x) \) oscillates based on the sign of \( n \), the series \( \sum h_n(x) \) is alternating and converges uniformly by the alternating series test. Thus, \( \sum h_n(x) \) converges uniformly on \( \mathbb{R}_{+} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad