Use implicit differentiation to find \( \frac{d y}{d x} \). \[ 9 x y+y^{2}=2 x+y \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( \frac{dy}{dx} \) using implicit differentiation for the equation \( 9xy + y^2 = 2x + y \), we'll differentiate both sides with respect to \( x \). Starting with the left side, for \( 9xy \), we apply the product rule: \[ \frac{d}{dx}(9xy) = 9\left(x\frac{dy}{dx} + y\right) \] For \( y^2 \): \[ \frac{d}{dx}(y^2) = 2y\frac{dy}{dx} \] Now differentiating the right side: \[ \frac{d}{dx}(2x) = 2, \quad \text{and} \quad \frac{d}{dx}(y) = \frac{dy}{dx} \] Putting everything together gives us: \[ 9\left(x\frac{dy}{dx} + y\right) + 2y\frac{dy}{dx} = 2 + \frac{dy}{dx} \] Now, we can combine like terms: \[ (9x + 2y - 1)\frac{dy}{dx} + 9y = 2 \] Isolating \( \frac{dy}{dx} \): \[ (9x + 2y - 1)\frac{dy}{dx} = 2 - 9y \] Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2 - 9y}{9x + 2y - 1} \] And there you have it! \( \frac{dy}{dx} = \frac{2 - 9y}{9x + 2y - 1} \).
