Pregunta
upstudy study bank question image url

LCM of \( 10,12,14 \)

Ask by Potter Stuart. in Nigeria
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The LCM of 10, 12, and 14 is 420.

Solución

To find the **Least Common Multiple (LCM)** of the numbers **10, 12,** and **14**, we can follow these steps: ### Step 1: Prime Factorization First, let's break down each number into its prime factors. - **10**: \( 10 = 2 \times 5 \) - **12**: \( 12 = 2^2 \times 3 \) - **14**: \( 14 = 2 \times 7 \) ### Step 2: Identify the Highest Powers of All Prime Factors For the LCM, we take the highest power of each prime number that appears in the factorization of any of the numbers. - **2**: The highest power is \( 2^2 \) (from 12) - **3**: The highest power is \( 3^1 \) (from 12) - **5**: The highest power is \( 5^1 \) (from 10) - **7**: The highest power is \( 7^1 \) (from 14) ### Step 3: Calculate the LCM Multiply these highest powers together: \[ \text{LCM} = 2^2 \times 3^1 \times 5^1 \times 7^1 = 4 \times 3 \times 5 \times 7 = 420 \] ### Conclusion The **LCM of 10, 12, and 14** is: \[ \boxed{420} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the least common multiple (LCM) of \( 10, 12, \) and \( 14 \), we first break each number down into its prime factors: - \( 10 = 2 \times 5 \) - \( 12 = 2^2 \times 3 \) - \( 14 = 2 \times 7 \) Next, we take the highest power of each prime factor present: - The prime factor \( 2 \) appears as \( 2^2 \) in \( 12 \). - The prime factor \( 3 \) appears as \( 3^1 \) in \( 12 \). - The prime factor \( 5 \) appears as \( 5^1 \) in \( 10 \). - The prime factor \( 7 \) appears as \( 7^1 \) in \( 14 \). Now, we multiply these together: \[ \text{LCM} = 2^2 \times 3^1 \times 5^1 \times 7^1 = 4 \times 3 \times 5 \times 7 = 420 \] So, the LCM of \( 10, 12, \) and \( 14 \) is \( 420 \)! Finding the LCM can be a bit like planning a grand party! You want to make sure that all friends (or numbers, in this case) can arrive together without anyone being fashionably late. By considering their prime factors, you’re practically rolling out a red carpet for all of them at the same time! Many people fall into the trap of just finding the LCM of two numbers at a time and multiplying them together, thinking that’s the end of the story. But this can lead you astray, particularly when you're dealing with three or more numbers. Always go for those prime factors and make sure to get the highest powers to avoid any party mishaps!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad