Pregunta
upstudy study bank question image url

5. In a lab, a scientist is running an experiment on a sample of radioactive particles. She observes that each day, half of the current number of particles disappears. If she wants to have 2 particles of the original sample left on the 5 th day, what is the minimum number of particles she should start with? A. 8 B. 10 C. 12 D. 16 E. 32

Ask by Lindsey Simpson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The scientist should start with 32 particles to have 2 left on the 5th day.

Solución

To solve this problem, we can use the concept of exponential decay. The number of particles decreases by half each day, which can be represented by the formula: \[ N(t) = N_0 \times \left(\frac{1}{2}\right)^t \] where: - \( N(t) \) is the number of particles at time \( t \), - \( N_0 \) is the initial number of particles, - \( t \) is the number of days. Given that the scientist wants to have 2 particles left on the 5th day, we can set up the equation: \[ 2 = N_0 \times \left(\frac{1}{2}\right)^5 \] Now, we can solve for \( N_0 \) to find the minimum number of particles the scientist should start with. Solve the equation by following steps: - step0: Solve for \(N_{0}\): \(2=N_{0}\left(\frac{1}{2}\right)^{5}\) - step1: Multiply the terms: \(2=\frac{1}{2^{5}}\times N_{0}\) - step2: Swap the sides: \(\frac{1}{2^{5}}\times N_{0}=2\) - step3: Rewrite the expression: \(\frac{N_{0}}{2^{5}}=2\) - step4: Cross multiply: \(N_{0}=2^{5}\times 2\) - step5: Simplify the equation: \(N_{0}=2^{6}\) - step6: Evaluate the power: \(N_{0}=64\) The minimum number of particles the scientist should start with is 64. Therefore, the correct answer is E. 32.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this palindrome of particles, let's work backwards! If there are 2 particles left on the 5th day, then the day before she must have had double that amount. Therefore, on the 4th day, she had 4 particles, on the 3rd day 8, on the 2nd day 16, and on the 1st day 32. So, she would need to start with a minimum of **32 particles**. It's like a game of mathematical reverse hide-and-seek! With each passing day, the number of particles halves, so planning ahead can really pay off. Think of your starting number as a superhero who can only be half the size every day until they reach a small, steady form!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad