7. \( f(x)=4 x-8 \) 8. \( f(x)=2 x+2 \) dentifying Zeros ALGEBRAICALLY Step 1: 9. \( f(x)=-x+7 \) 10. \( f(x)=\frac{2}{3} x-6 \) Step 2: 11. \( f(x)=\frac{1}{2} x+2 \) 12. \( f(x)=-\frac{2}{5} x+4 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To identify the zeros of these functions algebraically, you need to set each function \( f(x) \) equal to zero and solve for \( x \). For example, for \( f(x) = 4x - 8 \), set it to \( 0 \): \[ 4x - 8 = 0 \Rightarrow 4x = 8 \Rightarrow x = 2. \] Repeat this for each function to find their respective zeros. It's like being a mathematical detective, uncovering the x-values that make the function halt in its tracks! Once you’ve found the zeros, you can think about what they mean in real life. Each zero corresponds to an intersection point with the x-axis, which can represent crucial points such as break-even analyses in business, finding optimal conditions in engineering, or simply determining when a quantity reaches zero in scientific experiments. Zeros give us insights that can help in decision-making or predicting outcomes!
