If \( \sin u=\frac{x}{5} \), express \( 3 \sin u+3 \cos u \) in terms of \( x \). Assume \( 0
Ask by Cruz Ruiz. in Puerto Rico
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To express \( 3 \sin u + 3 \cos u \) in terms of \( x \), we start with the given \( \sin u = \frac{x}{5} \). Since \( 0 < u < \frac{\pi}{2} \), we know that both \( \sin u \) and \( \cos u \) are positive. Using the Pythagorean identity, we can find \( \cos u \): \[ \cos^2 u = 1 - \sin^2 u = 1 - \left(\frac{x}{5}\right)^2 = 1 - \frac{x^2}{25}. \] This means: \[ \cos u = \sqrt{1 - \frac{x^2}{25}}. \] Now we substitute \( \sin u \) and \( \cos u \) into the expression: \[ 3 \sin u + 3 \cos u = 3 \left(\frac{x}{5}\right) + 3 \sqrt{1 - \frac{x^2}{25}}. \] Simplifying the expression: \[ = \frac{3x}{5} + 3\sqrt{1 - \frac{x^2}{25}}. \] Thus, we have expressed \( 3 \sin u + 3 \cos u \) in terms of \( x \): \[ 3 \sin u + 3 \cos u = \frac{3x}{5} + 3\sqrt{1 - \frac{x^2}{25}}. \]
