Pregunta
upstudy study bank question image url

Prove the following identities \( \frac{\cos x}{1+\sin x}=\sqrt{\frac{1-\sin x}{1+\sin x}} \)

Ask by Weber Smith. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove that \( \frac{\cos x}{1+\sin x} = \sqrt{\frac{1-\sin x}{1+\sin x}} \), follow these steps: 1. **Rationalize the Denominator**: Multiply numerator and denominator by \( (1 - \sin x) \): \[ \frac{\cos x}{1+\sin x} = \frac{\cos x (1 - \sin x)}{(1+\sin x)(1 - \sin x)} = \frac{\cos x (1 - \sin x)}{1 - \sin^2 x} \] Since \( 1 - \sin^2 x = \cos^2 x \), this simplifies to: \[ \frac{\cos x (1 - \sin x)}{\cos^2 x} = \frac{1 - \sin x}{\cos x} \] 2. **Square Both Sides**: \[ \left( \frac{1 - \sin x}{\cos x} \right)^2 = \frac{(1 - \sin x)^2}{\cos^2 x} = \frac{1 - 2\sin x + \sin^2 x}{\cos^2 x} \] Using \( \cos^2 x = 1 - \sin^2 x \), this becomes: \[ \frac{1 - 2\sin x + \sin^2 x}{1 - \sin^2 x} = \frac{1 - \sin x}{1 + \sin x} \] 3. **Take the Positive Square Root**: Since both sides are nonnegative, we can take the positive square root: \[ \frac{1 - \sin x}{\cos x} = \sqrt{\frac{1 - \sin x}{1 + \sin x}} \] Therefore: \[ \frac{\cos x}{1+\sin x} = \sqrt{\frac{1-\sin x}{1+\sin x}} \] This completes the proof.

Solución

We want to show that   (cos x)/(1 + sin x) = √[(1 – sin x)/(1 + sin x)]. A good strategy is to start with the left-hand side (LHS) and simplify it until we reach the square-root form on the right-hand side (RHS). One must, however, be mindful of the domains and signs involved when taking square roots. We will assume here that the values of x are such that all expressions are defined and that both sides are nonnegative. Step 1. Rationalize the denominator of LHS Begin with   LHS = cos x/(1 + sin x). Multiply the numerator and denominator by (1 – sin x):   (cos x)/(1 + sin x) = [cos x (1 – sin x)]/[(1 + sin x)(1 – sin x)]. Recall that   (1 + sin x)(1 – sin x) = 1 – sin² x, and by the Pythagorean identity   1 – sin² x = cos² x. Thus we have:   (cos x)/(1 + sin x) = [cos x (1 – sin x)]/(cos² x). Step 2. Simplify further Now, cancel a factor of cos x (assuming cos x ≠ 0) to obtain:   (cos x)/(1 + sin x) = (1 – sin x)/cos x. Step 3. Square the simplified expression Our goal is to relate the expression to the square root on the right-hand side. Square (1 – sin x)/cos x:   [(1 – sin x)/cos x]² = (1 – sin x)²/cos² x. Recall again that cos² x = 1 – sin² x, and factor 1 – sin² x = (1 – sin x)(1 + sin x):   cos² x = (1 – sin x)(1 + sin x). Thus, we have:   [(1 – sin x)/cos x]² = (1 – sin x)²/[(1 – sin x)(1 + sin x)] = (1 – sin x)/(1 + sin x). Step 4. Take the positive square root Since we squared (1 – sin x)/cos x to get (1 – sin x)/(1 + sin x), it follows that   (1 – sin x)/cos x = √[(1 – sin x)/(1 + sin x)], provided that (1 – sin x)/cos x is nonnegative (which is assured by our assumption on the domain). Recalling that our original LHS was equal to (1 – sin x)/cos x, we have shown that:   cos x/(1 + sin x) = √[(1 – sin x)/(1 + sin x)]. Thus, the identity is proved. Note: One should check the domain restrictions; for example, 1 + sin x must be positive and cos x must be nonzero (or the signs must be chosen in such a way that the equality remains valid when considering the usual definition of the square root as the nonnegative root).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To prove the identity \( \frac{\cos x}{1+\sin x}=\sqrt{\frac{1-\sin x}{1+\sin x}} \), we will start by simplifying both sides. First, let's manipulate the right side: \[ \sqrt{\frac{1-\sin x}{1+\sin x}}. \] We can square both sides of the original equation to eliminate the square root: \[ \left(\frac{\cos x}{1+\sin x}\right)^2 = \frac{1-\sin x}{1+\sin x}. \] Expanding the left side gives: \[ \frac{\cos^2 x}{(1+\sin x)^2} = \frac{1-\sin x}{1+\sin x}. \] Next, we know from the Pythagorean identity that \( \cos^2 x = 1 - \sin^2 x \). Hence, we can substitute: \[ \frac{1 - \sin^2 x}{(1+\sin x)^2} = \frac{1-\sin x}{1+\sin x}. \] Now, notice that the left side simplifies as follows: \[ 1 - \sin^2 x = (1-\sin x)(1+\sin x) \Rightarrow \frac{(1-\sin x)(1+\sin x)}{(1+\sin x)^2}. \] Canceling \( (1+\sin x) \) from the numerator and denominator (valid because \( 1+\sin x \neq 0 \)): \[ \frac{1-\sin x}{1+\sin x}. \] This confirms both sides are equal: \[ \frac{\cos^2 x}{(1+\sin x)^2} = \frac{1-\sin x}{1+\sin x}. \] Thus, the identity is proved! And there you have it! A neat little step-by-step approach to proving your trigonometric identity. Keep practicing, and you'll be cracking more identities in no time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad