Responder
To solve the exercise:
1. **Find the length OP**: More information is needed from the diagram.
2. **Values**:
- \( \sin \theta = -\frac{4}{7} \)
- \( 61 \cos^{2} \theta + 1 = 61 \cdot \frac{33}{49} + 1 = \frac{2013}{49} + 1 = \frac{2062}{49} \)
- \( \tan(180^{\circ} - \theta) = -\tan \theta = -\frac{4}{\sqrt{33}} \)
3. **Given \( 7 \sin \theta + 4 = 0 \) and \( \cos \theta > 0 \)**:
- \( 1 - 49 \cos^{2} \theta = -32 \)
- \( \cos \theta \cdot \tan \theta = -\frac{4}{7} \)
4. **Prove the identities**:
- \( \cos^{2} x + \sin x \cdot \cos x \cdot \tan x = 1 \)
- \( \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} = 2 \cos^{2} \theta - 1 \)
If you need further assistance with part 1.1, please provide additional details.
Solución
Let's solve the exercise step by step.
### Exercise 1
#### 1.1 Find the length OP.
To find the length \( OP \), we need more information about the diagram or the context in which \( OP \) is defined. Please provide the necessary details or the diagram.
#### 1.2 Write down the values:
1.2.1 \( \sin \theta \)
1.2.2 \( 61 \cos^{2} \theta + 1 \)
1.2.3 \( \tan(180^{\circ} - \theta) \)
To solve these, we need to express them in terms of \( \sin \theta \) and \( \cos \theta \).
### 2. Given \( 7 \sin \theta + 4 = 0 \) and \( \cos \theta > 0 \):
From \( 7 \sin \theta + 4 = 0 \):
\[
\sin \theta = -\frac{4}{7}
\]
Since \( \cos \theta > 0 \), \( \theta \) is in the fourth quadrant.
#### 2.1 Find \( 1 - 49 \cos^{2} \theta \):
Using the Pythagorean identity:
\[
\sin^{2} \theta + \cos^{2} \theta = 1
\]
We can find \( \cos^{2} \theta \):
\[
\cos^{2} \theta = 1 - \sin^{2} \theta = 1 - \left(-\frac{4}{7}\right)^{2} = 1 - \frac{16}{49} = \frac{33}{49}
\]
Now, substituting into \( 1 - 49 \cos^{2} \theta \):
\[
1 - 49 \cos^{2} \theta = 1 - 49 \cdot \frac{33}{49} = 1 - 33 = -32
\]
#### 2.2 Find \( \cos \theta \cdot \tan \theta \):
First, we find \( \cos \theta \):
\[
\cos \theta = \sqrt{1 - \sin^{2} \theta} = \sqrt{1 - \left(-\frac{4}{7}\right)^{2}} = \sqrt{\frac{33}{49}} = \frac{\sqrt{33}}{7}
\]
Now, \( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{4}{7}}{\frac{\sqrt{33}}{7}} = -\frac{4}{\sqrt{33}} \).
Thus,
\[
\cos \theta \cdot \tan \theta = \frac{\sqrt{33}}{7} \cdot \left(-\frac{4}{\sqrt{33}}\right) = -\frac{4}{7}
\]
### 3. Given \( \cos A = \frac{5}{6} \) and \( A + B = 90^{\circ} \):
Since \( A + B = 90^{\circ} \), we have \( \sin B = \cos A = \frac{5}{6} \) and \( \cos B = \sin A \).
Using the identity \( \tan A = \frac{\sin A}{\cos A} \) and \( \tan B = \frac{\sin B}{\cos B} \):
\[
\tan A = \frac{\sqrt{1 - \cos^{2} A}}{\cos A} = \frac{\sqrt{1 - \left(\frac{5}{6}\right)^{2}}}{\frac{5}{6}} = \frac{\sqrt{\frac{11}{36}}}{\frac{5}{6}} = \frac{\sqrt{11}}{5}
\]
\[
\tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{6}}{\sqrt{1 - \left(\frac{5}{6}\right)^{2}}} = \frac{\frac{5}{6}}{\frac{\sqrt{11}}{6}} = \frac{5}{\sqrt{11}}
\]
Now, we can find:
\[
\frac{\tan A \cdot \tan B \cdot \sin A}{\cos B} = \frac{\left(\frac{\sqrt{11}}{5}\right) \cdot \left(\frac{5}{\sqrt{11}}\right) \cdot \sin A}{\cos B}
\]
Since \( \sin A = \sqrt{1 - \cos^{2} A} = \frac{\sqrt{11}}{6} \) and \( \cos B = \sin A = \frac{\sqrt{11}}{6} \):
\[
= \frac{\left(\frac{\sqrt{11}}{5}\right) \cdot \left(\frac{5}{\sqrt{11}}\right) \cdot \frac{\sqrt{11}}{6}}{\frac{\sqrt{11}}{6}} = 1
\]
### 4. Prove the following identities:
#### 4.1 Prove \( \cos^{2} x + \sin x \cdot \cos x \cdot \tan x = 1 \):
Using \( \tan x = \frac{\sin x}{\cos x} \):
\[
\sin x \cdot \cos x \cdot \tan x = \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} = \sin^{2} x
\]
Thus,
\[
\cos^{2} x + \sin^{2} x = 1
\]
#### 4.2 Prove \( \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} = 2 \cos^{2} \theta - 1 \):
Using \( \tan^{2} \theta = \frac{\sin^{2} \theta}{\cos^{2} \theta} \):
\[
\frac{1 - \frac{\sin^{2} \theta}{\cos^{2} \theta}}{1 + \frac{\sin^{2} \theta}{\cos^{2} \theta}} = \frac{\cos^{2} \theta - \sin^{2} \theta}{\cos^{2} \theta + \sin^{2} \theta} = \cos^{2} \theta - \sin^{2} \theta
\]
Using \( \cos^{2} \theta - \sin^{2} \theta = 2 \cos^{2} \theta - 1 \).
Thus, both identities are proven.
If you have any specific values or additional information for part 1.1, please provide them for further assistance!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución