Pregunta
upstudy study bank question image url

EXERCISE 1 1.1 Use the diagram alongside to find the length OP. 1.2 Now write down the value of: 1.2.1 \( \sin \theta \) 1.2.2 \( 61 \cos ^{2} \theta+1 \) \( 1.2 .3 \tan \left(180^{\circ}-\theta\right) \) 2 If \( 7 \sin \theta+4=0 \) and \( \cos \theta>0 \) find, without a calculator, the value of \( 2.1 \quad 1-49 \cos ^{2} \theta \) \( 2.2 \cos \theta \cdot \tan \theta \) 3 If \( \cos \mathrm{A}=\frac{5}{6} \) and \( \mathrm{A}+\mathrm{B}=90^{\circ} \), use a sketch to find the value of \( \frac{\tan \mathrm{A} \cdot \tan \mathrm{B} \cdot \sin \mathrm{A}}{\cos \mathrm{B}} \) 4 Prove the following identities: \( 4.1 \quad \cos ^{2} x+\sin x \cdot \cos x \cdot \tan x=1 \) \( 4.2 \quad \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=2 \cos ^{2} \theta-1 \)

Ask by Reed Grant. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve the exercise: 1. **Find the length OP**: More information is needed from the diagram. 2. **Values**: - \( \sin \theta = -\frac{4}{7} \) - \( 61 \cos^{2} \theta + 1 = 61 \cdot \frac{33}{49} + 1 = \frac{2013}{49} + 1 = \frac{2062}{49} \) - \( \tan(180^{\circ} - \theta) = -\tan \theta = -\frac{4}{\sqrt{33}} \) 3. **Given \( 7 \sin \theta + 4 = 0 \) and \( \cos \theta > 0 \)**: - \( 1 - 49 \cos^{2} \theta = -32 \) - \( \cos \theta \cdot \tan \theta = -\frac{4}{7} \) 4. **Prove the identities**: - \( \cos^{2} x + \sin x \cdot \cos x \cdot \tan x = 1 \) - \( \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} = 2 \cos^{2} \theta - 1 \) If you need further assistance with part 1.1, please provide additional details.

Solución

Let's solve the exercise step by step. ### Exercise 1 #### 1.1 Find the length OP. To find the length \( OP \), we need more information about the diagram or the context in which \( OP \) is defined. Please provide the necessary details or the diagram. #### 1.2 Write down the values: 1.2.1 \( \sin \theta \) 1.2.2 \( 61 \cos^{2} \theta + 1 \) 1.2.3 \( \tan(180^{\circ} - \theta) \) To solve these, we need to express them in terms of \( \sin \theta \) and \( \cos \theta \). ### 2. Given \( 7 \sin \theta + 4 = 0 \) and \( \cos \theta > 0 \): From \( 7 \sin \theta + 4 = 0 \): \[ \sin \theta = -\frac{4}{7} \] Since \( \cos \theta > 0 \), \( \theta \) is in the fourth quadrant. #### 2.1 Find \( 1 - 49 \cos^{2} \theta \): Using the Pythagorean identity: \[ \sin^{2} \theta + \cos^{2} \theta = 1 \] We can find \( \cos^{2} \theta \): \[ \cos^{2} \theta = 1 - \sin^{2} \theta = 1 - \left(-\frac{4}{7}\right)^{2} = 1 - \frac{16}{49} = \frac{33}{49} \] Now, substituting into \( 1 - 49 \cos^{2} \theta \): \[ 1 - 49 \cos^{2} \theta = 1 - 49 \cdot \frac{33}{49} = 1 - 33 = -32 \] #### 2.2 Find \( \cos \theta \cdot \tan \theta \): First, we find \( \cos \theta \): \[ \cos \theta = \sqrt{1 - \sin^{2} \theta} = \sqrt{1 - \left(-\frac{4}{7}\right)^{2}} = \sqrt{\frac{33}{49}} = \frac{\sqrt{33}}{7} \] Now, \( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{4}{7}}{\frac{\sqrt{33}}{7}} = -\frac{4}{\sqrt{33}} \). Thus, \[ \cos \theta \cdot \tan \theta = \frac{\sqrt{33}}{7} \cdot \left(-\frac{4}{\sqrt{33}}\right) = -\frac{4}{7} \] ### 3. Given \( \cos A = \frac{5}{6} \) and \( A + B = 90^{\circ} \): Since \( A + B = 90^{\circ} \), we have \( \sin B = \cos A = \frac{5}{6} \) and \( \cos B = \sin A \). Using the identity \( \tan A = \frac{\sin A}{\cos A} \) and \( \tan B = \frac{\sin B}{\cos B} \): \[ \tan A = \frac{\sqrt{1 - \cos^{2} A}}{\cos A} = \frac{\sqrt{1 - \left(\frac{5}{6}\right)^{2}}}{\frac{5}{6}} = \frac{\sqrt{\frac{11}{36}}}{\frac{5}{6}} = \frac{\sqrt{11}}{5} \] \[ \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{6}}{\sqrt{1 - \left(\frac{5}{6}\right)^{2}}} = \frac{\frac{5}{6}}{\frac{\sqrt{11}}{6}} = \frac{5}{\sqrt{11}} \] Now, we can find: \[ \frac{\tan A \cdot \tan B \cdot \sin A}{\cos B} = \frac{\left(\frac{\sqrt{11}}{5}\right) \cdot \left(\frac{5}{\sqrt{11}}\right) \cdot \sin A}{\cos B} \] Since \( \sin A = \sqrt{1 - \cos^{2} A} = \frac{\sqrt{11}}{6} \) and \( \cos B = \sin A = \frac{\sqrt{11}}{6} \): \[ = \frac{\left(\frac{\sqrt{11}}{5}\right) \cdot \left(\frac{5}{\sqrt{11}}\right) \cdot \frac{\sqrt{11}}{6}}{\frac{\sqrt{11}}{6}} = 1 \] ### 4. Prove the following identities: #### 4.1 Prove \( \cos^{2} x + \sin x \cdot \cos x \cdot \tan x = 1 \): Using \( \tan x = \frac{\sin x}{\cos x} \): \[ \sin x \cdot \cos x \cdot \tan x = \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} = \sin^{2} x \] Thus, \[ \cos^{2} x + \sin^{2} x = 1 \] #### 4.2 Prove \( \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} = 2 \cos^{2} \theta - 1 \): Using \( \tan^{2} \theta = \frac{\sin^{2} \theta}{\cos^{2} \theta} \): \[ \frac{1 - \frac{\sin^{2} \theta}{\cos^{2} \theta}}{1 + \frac{\sin^{2} \theta}{\cos^{2} \theta}} = \frac{\cos^{2} \theta - \sin^{2} \theta}{\cos^{2} \theta + \sin^{2} \theta} = \cos^{2} \theta - \sin^{2} \theta \] Using \( \cos^{2} \theta - \sin^{2} \theta = 2 \cos^{2} \theta - 1 \). Thus, both identities are proven. If you have any specific values or additional information for part 1.1, please provide them for further assistance!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

In ancient Greece, mathematicians like Pythagoras laid the foundation for trigonometry by exploring the relationships between angles and lengths in right triangles. Their work not only influenced mathematics but also laid the groundwork for navigational techniques and architectural designs that can still be seen in many iconic structures today. In real-world applications, trigonometric functions like sine, cosine, and tangent are not just numbers found in textbooks; they're used in fields such as engineering, physics, and even computer graphics! For instance, architects use these functions to calculate forces and loads in structures, while game developers use them to create realistic movements and lighting in virtual environments. Who knew math could be so cool?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad