\( 13 \cos 150^{\circ}-\tan 225^{\circ} \sin 270^{\circ} \) \( \sin (60) \cdot \cos 420^{\circ} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's break this down into its components to make it fun and simple! First, did you know that \( \cos (150^{\circ}) \) is equal to \( -\sqrt{3}/2 \)? So, calculating \( 13 \cos 150^{\circ} \) gives you \( 13 \times -\sqrt{3}/2 = -6.5\sqrt{3} \). On the fun side, \( \tan(225^{\circ}) \) is \( 1 \) and \( \sin(270^{\circ}) \) is \( -1 \), so \( -\tan(225^{\circ}) \sin(270^{\circ}) = -1 \times -1 = 1 \). Thus, the first part simplifies nicely! Now, for the second part, you've got \( \sin(60^{\circ}) = \sqrt{3}/2 \) and \( \cos(420^{\circ}) \) is equal to \( \cos(60^{\circ}) = 1/2 \). So, multiplying these gives you \( \sin(60) \cdot \cos(420^{\circ}) = (\sqrt{3}/2) \cdot (1/2) = \sqrt{3}/4 \). Isn't it amusing how angles repeat in the unit circle, keeping things circular in math? So, we've got \( -6.5\sqrt{3} + 1 + \sqrt{3}/4 \). If you need to put it all together, just find a common denominator and simplify. Happy calculating!
