Responder
(d) \( x + 2 \)
(c) \( 5x - \frac{5}{3}y \) with a remainder of \( -\frac{2}{3}y^{2} \)
(f) \( 7a + 4b \)
(g) \( x^{2} + 3xy + 9y^{2} \)
(h) \( 4x + 9y \)
Solución
Divide the polynomials by following steps:
- step0: Using Long Division to Divide Polynomials:
\(\left(x^{2}+4x+4\right)\div \left(x+2\right)\)
- step1: Calculate:
\(\left(x+2\right)\text{ }\textrm{remainder}\text{ }0\)
Let's go through the polynomial long division problems step by step.
### (d) \( \left(x^{2}+4 x+4\right) \div(x+2) \)
1. **Identify the dividend and divisor**:
- Dividend: \( x^{2} + 4x + 4 \)
- Divisor: \( x + 2 \)
2. **Perform the division**:
- The first term of the dividend \( x^{2} \) divided by the first term of the divisor \( x \) gives \( x \).
- Multiply \( x \) by the divisor \( (x + 2) \) to get \( x^{2} + 2x \).
- Subtract \( (x^{2} + 2x) \) from \( (x^{2} + 4x + 4) \):
\[
(x^{2} + 4x + 4) - (x^{2} + 2x) = 2x + 4
\]
- Now, divide \( 2x \) by \( x \) to get \( 2 \).
- Multiply \( 2 \) by the divisor \( (x + 2) \) to get \( 2x + 4 \).
- Subtract \( (2x + 4) \) from \( (2x + 4) \):
\[
(2x + 4) - (2x + 4) = 0
\]
3. **Conclusion**:
- The result of the division is \( x + 2 \) with a remainder of \( 0 \).
- Final result: \( (x + 2) \) remainder \( 0 \).
### (c) \( \left(15 x^{2}+5 x y-4 y^{2}\right) \div(3 x+2 y) \)
I encountered an error while trying to compute this division. Let's analyze it manually:
1. **Identify the dividend and divisor**:
- Dividend: \( 15x^{2} + 5xy - 4y^{2} \)
- Divisor: \( 3x + 2y \)
2. **Perform the division**:
- The first term of the dividend \( 15x^{2} \) divided by the first term of the divisor \( 3x \) gives \( 5x \).
- Multiply \( 5x \) by the divisor \( (3x + 2y) \) to get \( 15x^{2} + 10xy \).
- Subtract \( (15x^{2} + 10xy) \) from \( (15x^{2} + 5xy - 4y^{2}) \):
\[
(15x^{2} + 5xy - 4y^{2}) - (15x^{2} + 10xy) = -5xy - 4y^{2}
\]
- Now, divide \( -5xy \) by \( 3x \) to get \( -\frac{5}{3}y \).
- Multiply \( -\frac{5}{3}y \) by the divisor \( (3x + 2y) \) to get \( -5xy - \frac{10}{3}y^{2} \).
- Subtract \( (-5xy - \frac{10}{3}y^{2}) \) from \( (-5xy - 4y^{2}) \):
\[
(-5xy - 4y^{2}) - (-5xy - \frac{10}{3}y^{2}) = -4y^{2} + \frac{10}{3}y^{2} = -\frac{2}{3}y^{2}
\]
3. **Conclusion**:
- The result of the division is \( 5x - \frac{5}{3}y \) with a remainder of \( -\frac{2}{3}y^{2} \).
### (f) \( \left(35 a^{2}-a b-12 b^{2}\right) \div(5 a-3 b) \)
I encountered an error while trying to compute this division. Let's analyze it manually:
1. **Identify the dividend and divisor**:
- Dividend: \( 35a^{2} - ab - 12b^{2} \)
- Divisor: \( 5a - 3b \)
2. **Perform the division**:
- The first term of the dividend \( 35a^{2} \) divided by the first term of the divisor \( 5a \) gives \( 7a \).
- Multiply \( 7a \) by the divisor \( (5a - 3b) \) to get \( 35a^{2} - 21ab \).
- Subtract \( (35a^{2} - 21ab) \) from \( (35a^{2} - ab - 12b^{2}) \):
\[
(35a^{2} - ab - 12b^{2}) - (35a^{2} - 21ab) = 20ab - 12b^{2}
\]
- Now, divide \( 20ab \) by \( 5a \) to get \( 4b \).
- Multiply \( 4b \) by the divisor \( (5a - 3b) \) to get \( 20ab - 12b^{2} \).
- Subtract \( (20ab - 12b^{2}) \) from \( (20ab - 12b^{2}) \):
\[
(20ab - 12b^{2}) - (20ab - 12b^{2}) = 0
\]
3. **Conclusion**:
- The result of the division is \( 7a + 4b \) with a remainder of \( 0 \).
### (g) \( \left(x^{3}-27 y^{3}\right) \div(x-3 y) \)
I encountered an error while trying to compute this division. Let's analyze it manually:
1. **Identify the dividend and divisor**:
- Dividend: \( x^{3} - 27y^{3} \)
- Divisor: \( x - 3y \)
2. **Perform the division**:
- The expression \( x^{3} - 27y^{3} \) can be factored as \( (x - 3y)(x^{2} + 3xy + 9y^{2}) \).
- Therefore, dividing \( x^{3} - 27y^{3} \) by \( x - 3y \) gives \( x^{2} + 3xy + 9y^{2} \).
3. **Conclusion**:
- The result of
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución