Pregunta
upstudy study bank question image url

(d) \( \left(x^{2}+4 x+4\right) \div(x+2) \) (c) \( \left(15 x^{2}+5 x y-4 y^{2}\right) \div(3 x+2 y) \) (f) \( \left(35 a^{2}-a b-12 b^{2}\right) \div(5 a-3 b) \) (g) \( \left(x^{3}-27 y^{3}\right) \div(x-3 y) \) (h) \( \left(8 x^{3}+27 y^{3}\right) \div(2 x+3 y) \)

Ask by Nguyen Allan. in Nepal
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(d) \( x + 2 \) (c) \( 5x - \frac{5}{3}y \) with a remainder of \( -\frac{2}{3}y^{2} \) (f) \( 7a + 4b \) (g) \( x^{2} + 3xy + 9y^{2} \) (h) \( 4x + 9y \)

Solución

Divide the polynomials by following steps: - step0: Using Long Division to Divide Polynomials: \(\left(x^{2}+4x+4\right)\div \left(x+2\right)\) - step1: Calculate: \(\left(x+2\right)\text{ }\textrm{remainder}\text{ }0\) Let's go through the polynomial long division problems step by step. ### (d) \( \left(x^{2}+4 x+4\right) \div(x+2) \) 1. **Identify the dividend and divisor**: - Dividend: \( x^{2} + 4x + 4 \) - Divisor: \( x + 2 \) 2. **Perform the division**: - The first term of the dividend \( x^{2} \) divided by the first term of the divisor \( x \) gives \( x \). - Multiply \( x \) by the divisor \( (x + 2) \) to get \( x^{2} + 2x \). - Subtract \( (x^{2} + 2x) \) from \( (x^{2} + 4x + 4) \): \[ (x^{2} + 4x + 4) - (x^{2} + 2x) = 2x + 4 \] - Now, divide \( 2x \) by \( x \) to get \( 2 \). - Multiply \( 2 \) by the divisor \( (x + 2) \) to get \( 2x + 4 \). - Subtract \( (2x + 4) \) from \( (2x + 4) \): \[ (2x + 4) - (2x + 4) = 0 \] 3. **Conclusion**: - The result of the division is \( x + 2 \) with a remainder of \( 0 \). - Final result: \( (x + 2) \) remainder \( 0 \). ### (c) \( \left(15 x^{2}+5 x y-4 y^{2}\right) \div(3 x+2 y) \) I encountered an error while trying to compute this division. Let's analyze it manually: 1. **Identify the dividend and divisor**: - Dividend: \( 15x^{2} + 5xy - 4y^{2} \) - Divisor: \( 3x + 2y \) 2. **Perform the division**: - The first term of the dividend \( 15x^{2} \) divided by the first term of the divisor \( 3x \) gives \( 5x \). - Multiply \( 5x \) by the divisor \( (3x + 2y) \) to get \( 15x^{2} + 10xy \). - Subtract \( (15x^{2} + 10xy) \) from \( (15x^{2} + 5xy - 4y^{2}) \): \[ (15x^{2} + 5xy - 4y^{2}) - (15x^{2} + 10xy) = -5xy - 4y^{2} \] - Now, divide \( -5xy \) by \( 3x \) to get \( -\frac{5}{3}y \). - Multiply \( -\frac{5}{3}y \) by the divisor \( (3x + 2y) \) to get \( -5xy - \frac{10}{3}y^{2} \). - Subtract \( (-5xy - \frac{10}{3}y^{2}) \) from \( (-5xy - 4y^{2}) \): \[ (-5xy - 4y^{2}) - (-5xy - \frac{10}{3}y^{2}) = -4y^{2} + \frac{10}{3}y^{2} = -\frac{2}{3}y^{2} \] 3. **Conclusion**: - The result of the division is \( 5x - \frac{5}{3}y \) with a remainder of \( -\frac{2}{3}y^{2} \). ### (f) \( \left(35 a^{2}-a b-12 b^{2}\right) \div(5 a-3 b) \) I encountered an error while trying to compute this division. Let's analyze it manually: 1. **Identify the dividend and divisor**: - Dividend: \( 35a^{2} - ab - 12b^{2} \) - Divisor: \( 5a - 3b \) 2. **Perform the division**: - The first term of the dividend \( 35a^{2} \) divided by the first term of the divisor \( 5a \) gives \( 7a \). - Multiply \( 7a \) by the divisor \( (5a - 3b) \) to get \( 35a^{2} - 21ab \). - Subtract \( (35a^{2} - 21ab) \) from \( (35a^{2} - ab - 12b^{2}) \): \[ (35a^{2} - ab - 12b^{2}) - (35a^{2} - 21ab) = 20ab - 12b^{2} \] - Now, divide \( 20ab \) by \( 5a \) to get \( 4b \). - Multiply \( 4b \) by the divisor \( (5a - 3b) \) to get \( 20ab - 12b^{2} \). - Subtract \( (20ab - 12b^{2}) \) from \( (20ab - 12b^{2}) \): \[ (20ab - 12b^{2}) - (20ab - 12b^{2}) = 0 \] 3. **Conclusion**: - The result of the division is \( 7a + 4b \) with a remainder of \( 0 \). ### (g) \( \left(x^{3}-27 y^{3}\right) \div(x-3 y) \) I encountered an error while trying to compute this division. Let's analyze it manually: 1. **Identify the dividend and divisor**: - Dividend: \( x^{3} - 27y^{3} \) - Divisor: \( x - 3y \) 2. **Perform the division**: - The expression \( x^{3} - 27y^{3} \) can be factored as \( (x - 3y)(x^{2} + 3xy + 9y^{2}) \). - Therefore, dividing \( x^{3} - 27y^{3} \) by \( x - 3y \) gives \( x^{2} + 3xy + 9y^{2} \). 3. **Conclusion**: - The result of

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle polynomial division problems, it’s often helpful to remember that many of them can either be factored or approached with synthetic division. For instance, in the case of \( \left(x^{2}+4x+4\right) \div(x+2) \), recognize that \( x^2 + 4x + 4 \) is a perfect square and can be rewritten as \( (x + 2)^2 \). Thus, this division simplifies neatly to \( x + 2 \). When working through polynomials, a crucial step is ensuring you check for common factors and not skipping synthetic division for higher degree polynomials. For example, in \( \left(15 x^{2}+5xy-4y^{2}\right) \div(3x + 2y) \), you might find a faster route by regrouping terms or factoring. Always double-check each step to avoid algebraic slip-ups!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad