\( 1 \leftarrow \quad \begin{array}{r}\text { Solve and graph the solution set. } \\ 21 x(x-7)<3(7 x-1)(x-8)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the inequality \( 21x(x-7) < 3(7x-1)(x-8) \), start by expanding both sides. The left side becomes \( 21x^2 - 147x \), and the right side expands to \( 21x^2 - 3x - 168 \). This simplifies to \( 21x^2 - 147x < 21x^2 - 3x - 168 \). Subtract \( 21x^2 \) from both sides to get \( -147x < -3x - 168 \). Rearranging gives \( -144x < -168 \), or \( x > \frac{168}{144} = \frac{7}{6} \). Now, to graph the solution set on a number line: mark \( \frac{7}{6} \) and shade everything to the right, indicating that all values greater than \( \frac{7}{6} \) satisfy the inequality. In conclusion, \( x > \frac{7}{6} \).
