Responder
The simplified expression is:
\[
\frac{896x^{6}+4636x^{3}+952x^{4}+69x+553+400x^{2}}{800x^{6}+300x^{3}-400x^{4}-50x+25}.
\]
Solución
Simplify the expression by following steps:
- step0: Solution:
\(1.12+\frac{11\left(x+2\right)}{\left(4x^{3}-2x+1\right)}-\frac{\left(8x+1\right)}{\left(8x^{3}+1\right)}\)
- step1: Remove the parentheses:
\(1.12+\frac{11\left(x+2\right)}{4x^{3}-2x+1}-\frac{8x+1}{8x^{3}+1}\)
- step2: Rewrite the expression:
\(\frac{28}{25}+\frac{11\left(x+2\right)}{4x^{3}-2x+1}-\frac{8x+1}{8x^{3}+1}\)
- step3: Reduce fractions to a common denominator:
\(\frac{28\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}+\frac{11\left(x+2\right)\times 25\left(8x^{3}+1\right)}{\left(4x^{3}-2x+1\right)\times 25\left(8x^{3}+1\right)}-\frac{\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{\left(8x^{3}+1\right)\times 25\left(4x^{3}-2x+1\right)}\)
- step4: Reorder the terms:
\(\frac{28\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}+\frac{11\left(x+2\right)\times 25\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}-\frac{\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{\left(8x^{3}+1\right)\times 25\left(4x^{3}-2x+1\right)}\)
- step5: Reorder the terms:
\(\frac{28\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}+\frac{11\left(x+2\right)\times 25\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}-\frac{\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{25\left(8x^{3}+1\right)\left(4x^{3}-2x+1\right)}\)
- step6: Rewrite the expression:
\(\frac{28\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}+\frac{11\left(x+2\right)\times 25\left(8x^{3}+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}-\frac{\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step7: Transform the expression:
\(\frac{28\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)+11\left(x+2\right)\times 25\left(8x^{3}+1\right)-\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step8: Multiply the terms:
\(\frac{896x^{6}+336x^{3}-448x^{4}-56x+28+11\left(x+2\right)\times 25\left(8x^{3}+1\right)-\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step9: Multiply the terms:
\(\frac{896x^{6}+336x^{3}-448x^{4}-56x+28+2200x^{4}+275x+4400x^{3}+550-\left(8x+1\right)\times 25\left(4x^{3}-2x+1\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step10: Multiply the terms:
\(\frac{896x^{6}+336x^{3}-448x^{4}-56x+28+2200x^{4}+275x+4400x^{3}+550-\left(800x^{4}-400x^{2}+150x+100x^{3}+25\right)}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step11: Calculate:
\(\frac{896x^{6}+4636x^{3}+952x^{4}+69x+553+400x^{2}}{25\left(4x^{3}-2x+1\right)\left(8x^{3}+1\right)}\)
- step12: Calculate:
\(\frac{896x^{6}+4636x^{3}+952x^{4}+69x+553+400x^{2}}{800x^{6}+300x^{3}-400x^{4}-50x+25}\)
To simplify the expression
\[
1.12 + 11 \cdot \frac{x + 2}{4x^3 - 2x + 1} - \frac{8x + 1}{8x^3 + 1},
\]
we can break it down into steps:
1. **Convert the decimal to a fraction**:
\(1.12\) can be expressed as \(\frac{112}{100} = \frac{28}{25}\).
2. **Combine the fractions**:
The expression now looks like:
\[
\frac{28}{25} + 11 \cdot \frac{x + 2}{4x^3 - 2x + 1} - \frac{8x + 1}{8x^3 + 1}.
\]
3. **Find a common denominator**:
The common denominator for the fractions will be the product of the denominators:
\[
(4x^3 - 2x + 1)(8x^3 + 1) \cdot 25.
\]
4. **Combine all terms over the common denominator**:
After performing the necessary multiplications and combining, we arrive at the simplified expression:
\[
\frac{896x^{6}+4636x^{3}+952x^{4}+69x+553+400x^{2}}{800x^{6}+300x^{3}-400x^{4}-50x+25}.
\]
Thus, the final simplified form of the expression is:
\[
\frac{896x^{6}+4636x^{3}+952x^{4}+69x+553+400x^{2}}{800x^{6}+300x^{3}-400x^{4}-50x+25}.
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución