Pregunta
upstudy study bank question image url

Solve the quadratic equation by completing the square. \[ 3 z^{2}+2 z-1=0 \]

Ask by Ayala Lambert. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( z = \frac{1}{3} \) and \( z = -1 \).

Solución

To solve the quadratic equation   3z² + 2z – 1 = 0 by completing the square, follow these steps: 1. Divide the entire equation by 3 (the coefficient of z²) to simplify:   z² + (2/3)z – 1/3 = 0 2. Isolate the z-terms by moving the constant to the right side:   z² + (2/3)z = 1/3 3. To complete the square, take half of the coefficient of z, which is (2/3)/2 = 1/3, and square it:   (1/3)² = 1/9   Add 1/9 to both sides:   z² + (2/3)z + 1/9 = 1/3 + 1/9 4. The left side is now a perfect square trinomial:   (z + 1/3)² = (3/9 + 1/9) = 4/9 5. Take the square root of both sides:   z + 1/3 = ±√(4/9) = ± (2/3) 6. Solve for z by subtracting 1/3:   z = –1/3 + 2/3 or z = –1/3 – 2/3   z = 1/3 or z = –1 The solutions to the quadratic equation are:   z = 1/3 and z = –1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the quadratic equation \( 3z^{2}+2z-1=0 \) by completing the square, we first divide the whole equation by 3 to simplify it: \[ z^{2} + \frac{2}{3}z - \frac{1}{3} = 0. \] Next, we move the constant term to the other side: \[ z^{2} + \frac{2}{3}z = \frac{1}{3}. \] Now, we need to complete the square on the left side. We take half of the coefficient of \( z \) (which is \( \frac{2}{3} \)), square it, and add it to both sides. Half of \( \frac{2}{3} \) is \( \frac{1}{3} \), and squaring it gives us \( \left(\frac{1}{3}\right)^2 = \frac{1}{9} \). Adding \( \frac{1}{9} \) to both sides results in: \[ z^{2} + \frac{2}{3}z + \frac{1}{9} = \frac{1}{3} + \frac{1}{9}. \] Now, we need a common denominator to combine the right side. The common denominator is 9, so: \[ \frac{1}{3} = \frac{3}{9} \implies \frac{3}{9} + \frac{1}{9} = \frac{4}{9}. \] Thus, we have: \[ \left(z + \frac{1}{3}\right)^{2} = \frac{4}{9}. \] Taking the square root of both sides gives: \[ z + \frac{1}{3} = \pm \frac{2}{3}. \] Now, we solve for \( z \): 1. For the positive case: \[ z + \frac{1}{3} = \frac{2}{3} \implies z = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}. \] 2. For the negative case: \[ z + \frac{1}{3} = -\frac{2}{3} \implies z = -\frac{2}{3} - \frac{1}{3} = -1. \] Thus, the solutions to the quadratic equation are: \[ z = \frac{1}{3} \quad \text{and} \quad z = -1. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad