Pregunta
upstudy study bank question image url

etermine the genercl term for the following quadratic sequence using METHOD 1 \[ 5 ; 9 ; 17 ; 29 ; 45 \]

Ask by Wood Elliott. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general term of the sequence is \( 2n^2 - 2n + 5 \).

Solución

To determine the general term of the quadratic sequence \( 5, 9, 17, 29, 45 \) using METHOD 1, we will follow these steps: 1. **Identify the sequence**: The given sequence is \( a_1 = 5, a_2 = 9, a_3 = 17, a_4 = 29, a_5 = 45 \). 2. **Calculate the first differences**: We find the differences between consecutive terms. \[ \begin{align*} a_2 - a_1 & = 9 - 5 = 4 \\ a_3 - a_2 & = 17 - 9 = 8 \\ a_4 - a_3 & = 29 - 17 = 12 \\ a_5 - a_4 & = 45 - 29 = 16 \\ \end{align*} \] So, the first differences are \( 4, 8, 12, 16 \). 3. **Calculate the second differences**: Now, we find the differences of the first differences. \[ \begin{align*} 8 - 4 & = 4 \\ 12 - 8 & = 4 \\ 16 - 12 & = 4 \\ \end{align*} \] The second differences are constant and equal to \( 4 \). 4. **Formulate the general term**: Since the second differences are constant, the general term of the quadratic sequence can be expressed in the form: \[ a_n = An^2 + Bn + C \] where \( A \) is half of the second difference. Thus, \( A = \frac{4}{2} = 2 \). 5. **Set up equations to find \( B \) and \( C \)**: We can use the first few terms of the sequence to create a system of equations. We have: \[ \begin{align*} a_1 & = 2(1^2) + B(1) + C = 5 \quad \text{(1)} \\ a_2 & = 2(2^2) + B(2) + C = 9 \quad \text{(2)} \\ a_3 & = 2(3^2) + B(3) + C = 17 \quad \text{(3)} \\ \end{align*} \] Substituting the values into the equations: - From (1): \( 2 + B + C = 5 \) → \( B + C = 3 \) (Equation 1) - From (2): \( 8 + 2B + C = 9 \) → \( 2B + C = 1 \) (Equation 2) - From (3): \( 18 + 3B + C = 17 \) → \( 3B + C = -1 \) (Equation 3) 6. **Solve the system of equations**: We can solve Equations 1 and 2 first: \[ \begin{align*} B + C & = 3 \quad \text{(1)} \\ 2B + C & = 1 \quad \text{(2)} \\ \end{align*} \] Subtract Equation 1 from Equation 2: \[ (2B + C) - (B + C) = 1 - 3 \\ B = -2 \] Substitute \( B = -2 \) into Equation 1: \[ -2 + C = 3 \\ C = 5 \] 7. **Final general term**: Now we have \( A = 2 \), \( B = -2 \), and \( C = 5 \). Therefore, the general term of the sequence is: \[ a_n = 2n^2 - 2n + 5 \] Thus, the general term for the quadratic sequence \( 5, 9, 17, 29, 45 \) is: \[ \boxed{2n^2 - 2n + 5} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the general term of the quadratic sequence, we first find the differences between the terms: 1st differences: \( 9 - 5 = 4 \) \( 17 - 9 = 8 \) \( 29 - 17 = 12 \) \( 45 - 29 = 16 \) So, the first differences are: \[ 4, 8, 12, 16 \] 2nd differences: \( 8 - 4 = 4 \) \( 12 - 8 = 4 \) \( 16 - 12 = 4 \) Since the 2nd differences are constant and equal to \( 4 \), we can confirm it's a quadratic sequence. We can express the general term in the form: \[ T(n) = an^2 + bn + c \] Knowing that the 2nd difference corresponds to \( 2a \), we have: \[ 2a = 4 \Rightarrow a = 2 \] Now, we use the first term \( T(1) = 5 \): \[ 2(1)^2 + b(1) + c = 5 \Rightarrow 2 + b + c = 5 \Rightarrow b + c = 3 \] (1) For the second term \( T(2) = 9 \): \[ 2(2)^2 + b(2) + c = 9 \Rightarrow 8 + 2b + c = 9 \Rightarrow 2b + c = 1 \] (2) Now we can solve the equations (1) and (2). Substitute (1) into (2): From (1): \( c = 3 - b \) Substituting into (2): \[ 2b + (3 - b) = 1 \] \[ 2b + 3 - b = 1 \] \[ b + 3 = 1 \Rightarrow b = -2 \] Now, substitute \( b \) back into (1): \[ -2 + c = 3 \Rightarrow c = 5 \] Thus, the general term of the sequence is: \[ T(n) = 2n^2 - 2n + 5 \] So, the general term for the sequence is: \[ T(n) = 2n^2 - 2n + 5 \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad