Pregunta
upstudy study bank question image url

A container of candy is shaped like a cylinder and has a volume of 125.6 cubic centimeters. If the height of the container is 10 centimeters, what is the radius of the container? Use 3.14 for pi.

Ask by Boone Rogers. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The radius of the container is 2 centimeters.

Solución

The formula for the volume of a cylinder is V = πr²h. We are given: • V = 125.6 cubic centimeters • h = 10 centimeters • π = 3.14 Substitute these values into the formula: 125.6 = 3.14 × r² × 10 Simplify the equation: 125.6 = 31.4 × r² Now, solve for r² by dividing both sides by 31.4: r² = 125.6 / 31.4 r² = 4 Finally, take the square root of both sides to find r: r = √4 r = 2 centimeters Thus, the radius of the container is 2 centimeters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the radius of a cylinder when given its volume and height, we can use the formula for the volume of a cylinder: \[ V = \pi r^2 h \] Plugging in the values you have: \[ 125.6 = 3.14 \times r^2 \times 10 \] This simplifies to: \[ 125.6 = 31.4 r^2 \] Now, divide both sides by 31.4: \[ r^2 = \frac{125.6}{31.4} \] This gives us: \[ r^2 = 4 \] Taking the square root of both sides, we find: \[ r = 2 \text{ centimeters} \] So, the radius of the container is 2 centimeters. --- Did you know that cylinders are not just useful for storing candy? In architecture and engineering, cylindrical shapes are often used for pillars and columns because they effectively distribute weight, making structures safer and more stable. Who knew candy containers could have such solid real-world implications? When tackling problems involving cylinders, remember to double-check your calculations, especially when substituting values into the formula. A common mistake is confusing the height and radius, which can lead to incorrect results. Always sketch a quick diagram to visualize the dimensions before diving into the math!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad