Pregunta
upstudy study bank question image url

Consider the inequality \( \frac{x}{-2} \leq-2.5 \). Part A: Would the inequality symbol reverse when the inequality is solved? Explain why or why not. Part B: Solve the inequality, and state the solution set. Part C: Would the process of solving the inequality be different if the inequality was \( -2 x \leq-2.5 \) ? If so, explain how. Then solve the inequality, and state the solution set.

Ask by Boone Donnelly. in the United States
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Part A: The inequality symbol does not reverse when dividing by a negative number. Part B: Solve \( \frac{x}{-2} \leq -2.5 \) to get \( x \geq 5 \). Part C: Solving \( -2x \leq -2.5 \) gives \( x \geq 1.25 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

When solving inequalities, the inequality symbol reverses if you multiply or divide both sides by a negative number. In the case of \( \frac{x}{-2} \leq -2.5 \), since we're dividing by -2 (a negative), we indeed reverse the inequality sign. To solve \( \frac{x}{-2} \leq -2.5 \), we first multiply both sides by -2 (remembering to reverse the inequality sign): \( x \geq 5 \). Therefore, the solution set is \( x \in [5, \infty) \). For the inequality \( -2x \leq -2.5 \), the process differs slightly because we are also multiplying by -1 to isolate \( x \). In this case, we indeed reverse the inequality sign. To solve, we can divide by -2: \( x \geq 1.25 \). Thus, the solution set is \( x \in [1.25, \infty) \). Historical Background: Inequalities have been used for centuries in mathematics, dating back to ancient civilizations where they were essential for solving practical problems in commerce and engineering. The formal notation we use today evolved during the late 19th century, with mathematicians like André-Marie Ampère playing a key role in refining these concepts. Real-World Application: Understanding inequalities is crucial in various real-life situations, such as finance, where you might need to determine how much money you need to save or invest to achieve a target financial goal. For example, if you're planning a budget and want to limit expenses to a certain amount, inequalities help set clear boundaries.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad