10. Biologists leamed that the shoulder height, \( h \), in centimeters, of a male African elephant can be modeled by the formula below, where \( t \) is the age in years of the elephant. \[ h=62.5 \sqrt[3]{t}+75.8 \] If the shoulder height of an elephant ( \( h \) ) is 275 centimeters, approximately how old (t) might the elephant be?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the age \( t \) of the elephant when its shoulder height \( h \) is 275 cm, we start with the equation provided: \[ h = 62.5 \sqrt[3]{t} + 75.8 \] Setting \( h \) to 275 cm, we will plug in the value and solve for \( t \): \[ 275 = 62.5 \sqrt[3]{t} + 75.8 \] Subtracting 75.8 from both sides gives: \[ 275 - 75.8 = 62.5 \sqrt[3]{t} \] \[ 199.2 = 62.5 \sqrt[3]{t} \] Next, we divide both sides by 62.5: \[ \sqrt[3]{t} = \frac{199.2}{62.5} \] Calculating the right side yields: \[ \sqrt[3]{t} \approx 3.1872 \] Now we will cube both sides to solve for \( t \): \[ t = (3.1872)^3 \] Calculating that gives: \[ t \approx 32.3 \] Thus, the elephant is approximately 32 years old.
