Use implicit differentiation to find \( \frac{d y}{d x} \) \[ x^{3}=\frac{9 x-y}{x+5 y} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find \( \frac{dy}{dx} \) using implicit differentiation for the equation \[ x^{3} = \frac{9x - y}{x + 5y}, \] first, we can start by eliminating the fraction by multiplying both sides by \(x + 5y\): \[ x^3(x + 5y) = 9x - y. \] Now, expand the left side: \[ x^4 + 5x^3y = 9x - y. \] Rearranging gives us: \[ x^4 + 5x^3y + y = 9x. \] Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^4) + \frac{d}{dx}(5x^3y) + \frac{d}{dx}(y) = \frac{d}{dx}(9x). \] This yields: \[ 4x^3 + 5(3x^2y + x^3\frac{dy}{dx}) + \frac{dy}{dx} = 9. \] Now simplify: \[ 4x^3 + 15x^2y + 5x^3\frac{dy}{dx} + \frac{dy}{dx} = 9. \] Combine the terms involving \( \frac{dy}{dx} \): \[ 4x^3 + 15x^2y + (5x^3 + 1)\frac{dy}{dx} = 9. \] Now, isolate \( \frac{dy}{dx} \): \[ (5x^3 + 1)\frac{dy}{dx} = 9 - 4x^3 - 15x^2y. \] Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{9 - 4x^3 - 15x^2y}{5x^3 + 1}. \]
