Pregunta
upstudy study bank question image url

Use implicit differentiation to find \( \frac{d y}{d x} \) \[ x^{3}=\frac{9 x-y}{x+5 y} \]

Ask by Fitzgerald Whittaker. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{dy}{dx} = \frac{9 - 4x^3 - 15x^2 y}{5x^3 + 1} \]

Solución

We start with the given equation:   x³ = (9x – y) / (x + 5y) Step 1. Eliminate the fraction by cross multiplying:   x³(x + 5y) = 9x – y Step 2. Expand the left-hand side:   x⁴ + 5x³y = 9x – y Step 3. Differentiate both sides of the equation with respect to x. Remember that y is a function of x, so when differentiating any term with y, use the chain rule. Differentiate the left-hand side term by term: • d/dx (x⁴) = 4x³ • d/dx (5x³y): Use the product rule, where u = 5x³ and v = y.   u' = 15x² and v' = dy/dx,   so d/dx (5x³y) = (5x³)(dy/dx) + (15x²)(y) = 5x³ (dy/dx) + 15x²y Thus, the derivative of the left-hand side becomes:   4x³ + 15x²y + 5x³ (dy/dx) Now differentiate the right-hand side: • d/dx (9x) = 9 • d/dx (–y) = –(dy/dx) So the derivative of the right-hand side is:   9 – (dy/dx) Step 4. Set the derivatives equal to each other:   4x³ + 15x²y + 5x³ (dy/dx) = 9 – (dy/dx) Step 5. Collect all terms involving dy/dx on one side of the equation. Add (dy/dx) to both sides to get:   5x³ (dy/dx) + (dy/dx) = 9 – 4x³ – 15x²y Factor dy/dx from the left-hand side:   (dy/dx)(5x³ + 1) = 9 – 4x³ – 15x²y Step 6. Finally, solve for dy/dx by dividing both sides by (5x³ + 1):   dy/dx = (9 – 4x³ – 15x²y) / (5x³ + 1) This is the derivative of y with respect to x obtained by implicit differentiation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( \frac{dy}{dx} \) using implicit differentiation for the equation \[ x^{3} = \frac{9x - y}{x + 5y}, \] first, we can start by eliminating the fraction by multiplying both sides by \(x + 5y\): \[ x^3(x + 5y) = 9x - y. \] Now, expand the left side: \[ x^4 + 5x^3y = 9x - y. \] Rearranging gives us: \[ x^4 + 5x^3y + y = 9x. \] Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^4) + \frac{d}{dx}(5x^3y) + \frac{d}{dx}(y) = \frac{d}{dx}(9x). \] This yields: \[ 4x^3 + 5(3x^2y + x^3\frac{dy}{dx}) + \frac{dy}{dx} = 9. \] Now simplify: \[ 4x^3 + 15x^2y + 5x^3\frac{dy}{dx} + \frac{dy}{dx} = 9. \] Combine the terms involving \( \frac{dy}{dx} \): \[ 4x^3 + 15x^2y + (5x^3 + 1)\frac{dy}{dx} = 9. \] Now, isolate \( \frac{dy}{dx} \): \[ (5x^3 + 1)\frac{dy}{dx} = 9 - 4x^3 - 15x^2y. \] Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{9 - 4x^3 - 15x^2y}{5x^3 + 1}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad