Solve the equation and check the solution. \[ \sqrt{29 x+53}-9=x \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the equation \(\sqrt{29x + 53} - 9 = x\), we'll first isolate the square root term: \[ \sqrt{29x + 53} = x + 9 \] Next, we'll square both sides to eliminate the square root: \[ 29x + 53 = (x + 9)^2 \] Expanding the right-hand side: \[ 29x + 53 = x^2 + 18x + 81 \] Now, rearranging the equation: \[ 0 = x^2 + 18x + 81 - 29x - 53 \] This simplifies to: \[ 0 = x^2 - 11x + 28 \] Next, we can factor the quadratic equation: \[ 0 = (x - 7)(x - 4) \] Setting each factor equal to zero gives us the solutions: \[ x - 7 = 0 \quad \Rightarrow \quad x = 7 \] \[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \] Now we will check both solutions in the original equation. **Checking \(x = 7\):** \[ \sqrt{29(7) + 53} - 9 = 7 \] \[ \sqrt{203 + 53} - 9 = 7 \] \[ \sqrt{256} - 9 = 7 \] \[ 16 - 9 = 7 \] This is correct. **Checking \(x = 4\):** \[ \sqrt{29(4) + 53} - 9 = 4 \] \[ \sqrt{116 + 53} - 9 = 4 \] \[ \sqrt{169} - 9 = 4 \] \[ 13 - 9 = 4 \] This is also correct. Thus, the solutions to the equation \(\sqrt{29x + 53} - 9 = x\) are: \[ \boxed{7 \text{ and } 4} \]
