Pregunta
upstudy study bank question image url

a) R5 s00 at \( 9,1 \% \) compounded annee Por 5 years? b) R100 000 at \( 11,2 \% \quad p \cdot a \cdot C \) I for years 3.fit unat intaest rate must \( \begin{array}{llll}K 20 & 00 & \text { be invested to grow to } \\ \text { K27 000 in is years. If CI usec }\end{array} \) Ci. Calculaze the origimal amount invested, if you have R150 000 in years it the interest vas \( 5,25 \% \) pa CI

Ask by Garrett Best. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Part a:** R7.73 - **Part b:** R137,503.69 - **Part c:** 6.19% - **Part d:** R116,139.71

Solución

Let's break down each part of the problem step by step. ### Part a We need to calculate the future value of an investment of R5, compounded annually at a rate of \( 9.1\% \) for 5 years. The formula for compound interest is given by: \[ A = P(1 + r)^n \] where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = the principal amount (the initial amount of money). - \( r \) = the annual interest rate (decimal). - \( n \) = the number of years the money is invested or borrowed. **Given:** - \( P = 5 \) - \( r = 9.1\% = 0.091 \) - \( n = 5 \) Now, we can substitute these values into the formula. ### Part b We need to calculate the future value of an investment of R100,000 at \( 11.2\% \) compounded annually for 3 years. Using the same formula: \[ A = P(1 + r)^n \] **Given:** - \( P = 100000 \) - \( r = 11.2\% = 0.112 \) - \( n = 3 \) ### Part c We need to find the interest rate \( r \) that must be invested to grow R20,000 to R27,000 in 5 years using compound interest. We can rearrange the compound interest formula to solve for \( r \): \[ A = P(1 + r)^n \implies 1 + r = \left(\frac{A}{P}\right)^{\frac{1}{n}} \implies r = \left(\frac{A}{P}\right)^{\frac{1}{n}} - 1 \] **Given:** - \( A = 27000 \) - \( P = 20000 \) - \( n = 5 \) ### Part d We need to calculate the original amount invested if R150,000 is accumulated in 5 years at an interest rate of \( 5.25\% \) compounded annually. Using the rearranged formula: \[ P = \frac{A}{(1 + r)^n} \] **Given:** - \( A = 150000 \) - \( r = 5.25\% = 0.0525 \) - \( n = 5 \) Now, let's perform the calculations for each part. Calculate the value by following steps: - step0: Calculate: \(100000\left(1+0.112\right)^{3}\) - step1: Add the numbers: \(100000\times 1.112^{3}\) - step2: Convert the expressions: \(100000\left(\frac{139}{125}\right)^{3}\) - step3: Simplify: \(100000\times \frac{139^{3}}{125^{3}}\) - step4: Rewrite the expression: \(3125\times 32\times \frac{139^{3}}{125^{3}}\) - step5: Rewrite the expression: \(5^{5}\times 32\times \frac{139^{3}}{5^{9}}\) - step6: Reduce the numbers: \(32\times \frac{139^{3}}{5^{4}}\) - step7: Multiply: \(\frac{32\times 139^{3}}{5^{4}}\) - step8: Simplify: \(\frac{32\times 139^{3}}{625}\) Calculate or simplify the expression \( 150000/(1 + 0.0525)^5 \). Calculate the value by following steps: - step0: Calculate: \(\frac{150000}{\left(1+0.0525\right)^{5}}\) - step1: Add the numbers: \(\frac{150000}{1.0525^{5}}\) - step2: Convert the expressions: \(\frac{150000}{\left(\frac{421}{400}\right)^{5}}\) - step3: Simplify the expression: \(\frac{150000}{\frac{421^{5}}{400^{5}}}\) - step4: Rewrite the expression: \(\frac{150000\times 400^{5}}{421^{5}}\) Calculate or simplify the expression \( (27000/20000)^(1/5) - 1 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{27000}{20000}\right)^{\frac{1}{5}}-1\) - step1: Reduce the fraction: \(\left(\frac{27}{20}\right)^{\frac{1}{5}}-1\) - step2: Rewrite the expression: \(\frac{27^{\frac{1}{5}}}{20^{\frac{1}{5}}}-1\) - step3: Calculate: \(\frac{27^{\frac{1}{5}}\times 20^{\frac{4}{5}}}{20}-1\) - step4: Reduce fractions to a common denominator: \(\frac{27^{\frac{1}{5}}\times 20^{\frac{4}{5}}}{20}-\frac{20}{20}\) - step5: Transform the expression: \(\frac{27^{\frac{1}{5}}\times 20^{\frac{4}{5}}-20}{20}\) - step6: Simplify: \(\frac{2\sqrt[5]{5000}\times \sqrt[5]{27}-20}{20}\) - step7: Reduce the fraction: \(\frac{\sqrt[5]{135000}-10}{10}\) Calculate or simplify the expression \( 5*(1 + 0.091)^5 \). Calculate the value by following steps: - step0: Calculate: \(5\left(1+0.091\right)^{5}\) - step1: Add the numbers: \(5\times 1.091^{5}\) - step2: Convert the expressions: \(5\left(\frac{1091}{1000}\right)^{5}\) - step3: Simplify: \(5\times \frac{1091^{5}}{1000^{5}}\) - step4: Rewrite the expression: \(5\times \frac{1091^{5}}{125^{5}\times 8^{5}}\) - step5: Rewrite the expression: \(5\times \frac{1091^{5}}{5^{15}\times 8^{5}}\) - step6: Reduce the numbers: \(1\times \frac{1091^{5}}{5^{14}\times 8^{5}}\) - step7: Multiply the fractions: \(\frac{1091^{5}}{32768\times 5^{14}}\) ### Part a The future value of R5 compounded annually at \( 9.1\% \) for 5 years is calculated as follows: \[ A = 5(1 + 0.091)^5 \approx 7.73 \] So, the amount after 5 years will be approximately **R7.73**. ### Part b The future value of R100,000 compounded annually at \( 11.2\% \) for 3 years is: \[ A = 100000(1 + 0.112)^3 \approx 137503.69 \] Thus, the amount after 3 years will be approximately **R137,503.69**. ### Part c To find the interest rate \( r \) that grows R20,000 to R27,000 in 5 years: \[ r = \left(\frac{27000}{20000}\right)^{\frac{1}{5}} - 1 \approx 0.06186 \] This means the interest rate must be approximately **6.19%**. ### Part d To calculate the original amount invested if R150,000 is accumulated in 5 years at an interest rate of \( 5.25\% \): \[ P = \frac{150000}{(1 + 0.0525)^5} \approx 116139.71 \] Thus, the original amount invested was approximately **R116,139.71**. ### Summary of Results: - **Part a:** R7.73 - **Part b:** R137,503.69 - **Part c:** 6.19% - **Part d:** R116,139.71

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Compounding interest dates back to ancient civilizations, where merchants and traders would lend money and charge interest. Fast forward to today, the formula for compound interest is a crucial part of finance, embodied in the famous equation \( A = P(1 + r/n)^{nt} \). This helps individuals understand how their money can grow over time, leading to smarter investment decisions and wealth accumulation! When you're dealing with investments, it's essential to remember that timing and rate can make a massive difference in your returns. A common pitfall is underestimating the power of compounding—invest early and reinvest your earnings. Always double-check your calculations, especially the interest rate and compounding frequency, to avoid common miscalculations that can lead to shortfalls in expected returns. Happy investing!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad