Pregunta
Re-write the quadratic function below in Standard Form \[ y=-2(x-4)^{2}+8 \]
Ask by Schneider Schultz. in the United States
Feb 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The standard form of the quadratic function is \( y = -2x^{2} + 16x - 24 \).
Solución
To rewrite the quadratic function \( y = -2(x-4)^{2} + 8 \) in standard form, we need to expand the expression and simplify it. The standard form of a quadratic function is given by:
\[
y = ax^2 + bx + c
\]
where \( a \), \( b \), and \( c \) are constants.
Let's proceed step by step:
1. **Expand the squared term**:
\[
(x-4)^{2} = x^{2} - 8x + 16
\]
2. **Substitute back into the equation**:
\[
y = -2(x^{2} - 8x + 16) + 8
\]
3. **Distribute \(-2\)**:
\[
y = -2x^{2} + 16x - 32 + 8
\]
4. **Combine like terms**:
\[
y = -2x^{2} + 16x - 24
\]
Now, we have the quadratic function in standard form:
\[
y = -2x^{2} + 16x - 24
\]
Thus, the standard form of the given quadratic function is:
\[
y = -2x^{2} + 16x - 24
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To convert the quadratic function from vertex form to standard form, we start with: \[ y = -2(x-4)^{2} + 8 \] First, expand the squared term: \[ (x-4)^{2} = x^2 - 8x + 16 \] Now substitute this back into the equation: \[ y = -2(x^2 - 8x + 16) + 8 \] Distributing \(-2\) gives: \[ y = -2x^2 + 16x - 32 + 8 \] Now, combine the constant terms: \[ y = -2x^2 + 16x - 24 \] So the quadratic function in standard form is: \[ y = -2x^2 + 16x - 24 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium