Applied Example: The profit function of Acrosonic Company is given by \( P(x)=-0.02 x^{2}+300 x-200,000 \) dollars, where \( x \) is the number of Acrosonic model \( F \) loudspeakers systems produced. Find the extrema points of the \( P(x) \) function.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the extrema points of the profit function \( P(x)=-0.02 x^{2}+300 x-200,000 \), we first need to calculate the derivative of the function and set it equal to zero. The derivative \( P'(x) \) gives us: \[ P'(x) = -0.04x + 300. \] Setting \( P'(x) = 0 \) leads us to: \[ -0.04x + 300 = 0 \] \[ 0.04x = 300 \] \[ x = 7500. \] Next, to determine whether this point is a maximum or minimum, we can use the second derivative test. The second derivative \( P''(x) \) is: \[ P''(x) = -0.04. \] Since \( P''(x) < 0 \), this indicates that \( P(x) \) has a local maximum at \( x = 7500 \). Thus, the extremum point occurs when 7500 loudspeakers are produced, which yields the maximum profit. Now, let’s calculate the maximum profit by substituting \( x = 7500 \) back into \( P(x) \): \[ P(7500) = -0.02(7500)^{2}+300(7500)-200,000. \] Calculating that gives: \[ P(7500) = -0.02(56250000) + 225000 - 200000 = -1125000 + 225000 - 200000 = 112500. \] Therefore, the maximum profit occurs when 7500 loudspeakers are produced, resulting in a profit of $112,500.
preguntas relacionadas
