Pregunta
Find the domain of the rational function in interval notation. \( f(x)=\frac{x^{3}+x^{2}+3 x-2}{x-3} \)
Ask by Barrett Martin. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The domain of the function is all real numbers except 3, written as \( (-\infty, 3) \cup (3, \infty) \).
Solución
The function is given by f(x) = (x³ + x² + 3x - 2) / (x - 3). The domain consists of all real numbers except where the denominator is zero.
To find that value, set the denominator equal to zero:
x - 3 = 0 ⟹ x = 3.
Therefore, x cannot be 3. In interval notation, the domain is:
(-∞, 3) ∪ (3, ∞).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the domain of the rational function \( f(x) = \frac{x^{3} + x^{2} + 3x - 2}{x - 3} \), we first need to identify any values that would make the denominator equal to zero since these values are not included in the domain. The denominator \( x - 3 = 0 \) when \( x = 3 \). Thus, the function is undefined at this point. The rest of the real numbers are included in the domain. Therefore, in interval notation, the domain of the function is: \[ (-\infty, 3) \cup (3, \infty) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium