Pregunta
upstudy study bank question image url

Given , and that is a zero, write in factored form
(as a product of linear factors). Be sure to write the full equation, including .

Ask by Welch Harmon. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solución

We start with
Since is a zero and the coefficients of are real, its complex conjugate must also be a zero. Thus, the factors
appear in the factorization. Their product is
Next, we perform the division
to find the remaining factor. Dividing step by step:
  1. Divide the first term by to get . Multiply and subtract:
  2. Divide by to get . Multiply and subtract:
  3. Divide by to get . Multiply and subtract:
  4. Finally, divide by to get . Multiply and subtract:
The quotient is
Thus, we have
Now, we factor the cubic . Testing possible roots, we find:
so is a zero. Dividing by (using synthetic division or polynomial division) gives:
Next, we factor the quadratic . We look for two numbers whose product is and whose sum is . We can write:
Thus, the complete factorization over the real numbers is
Finally, since the problem asks for a product of linear factors (over the complex numbers), we factor as
Therefore, the fully factored form is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Since is a zero of the polynomial, its conjugate must also be a zero. To factor , we can first form the quadratic factor associated with the complex zeros:
Next, we will perform polynomial long division to divide by . Through this process, we find:
Now, we need to factor . We can find the rational roots, which leads us to find that is a root. Performing synthetic division:
Next, we factor the quadratic . Using the quadratic formula:
This gives us two additional real roots. Thus, the full factorization is:
Thus, the final expression in factored form is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad