Pregunta
upstudy study bank question image url

Simplify the following complex fractions: \( \begin{array}{ll}\text { (1) } \frac{2+\frac{1}{x}}{\frac{1}{x^{2}}} & \text { (2) } 3-\frac{x-\frac{9}{x}}{x-3}\end{array} \)

Ask by Hardy Lambert. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \frac{2+\frac{1}{x}}{\frac{1}{x^{2}}} = 2x^{2}+x \) \( 3-\frac{x-\frac{9}{x}}{x-3} = \frac{2x-3}{x} \)

Solución

Calculate or simplify the expression \( (2+\frac{1}{x})/(1/x^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2+\frac{1}{x}\right)}{\frac{1}{x^{2}}}\) - step1: Remove the parentheses: \(\frac{2+\frac{1}{x}}{\frac{1}{x^{2}}}\) - step2: Add the terms: \(\frac{\frac{2x+1}{x}}{\frac{1}{x^{2}}}\) - step3: Multiply by the reciprocal: \(\frac{2x+1}{x}\times x^{2}\) - step4: Reduce the fraction: \(\left(2x+1\right)x\) - step5: Multiply the terms: \(x\left(2x+1\right)\) - step6: Apply the distributive property: \(x\times 2x+x\times 1\) - step7: Multiply the terms: \(2x^{2}+x\) Calculate or simplify the expression \( 3-(x-\\frac{9}{x})/(x-3) \). Simplify the expression by following steps: - step0: Solution: \(3-\frac{\left(x-\frac{9}{x}\right)}{\left(x-3\right)}\) - step1: Remove the parentheses: \(3-\frac{x-\frac{9}{x}}{x-3}\) - step2: Subtract the terms: \(3-\frac{\frac{x^{2}-9}{x}}{x-3}\) - step3: Divide the terms: \(3-\frac{x+3}{x}\) - step4: Reduce fractions to a common denominator: \(\frac{3x}{x}-\frac{x+3}{x}\) - step5: Transform the expression: \(\frac{3x-\left(x+3\right)}{x}\) - step6: Subtract the terms: \(\frac{2x-3}{x}\) The simplified forms of the given complex fractions are: 1. \( \frac{2+\frac{1}{x}}{\frac{1}{x^{2}}} = 2x^{2}+x \) 2. \( 3-\frac{x-\frac{9}{x}}{x-3} = \frac{2x-3}{x} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the complex fractions given, we'll simplify each one step by step. 1. For the first complex fraction \( \frac{2+\frac{1}{x}}{\frac{1}{x^{2}}} \): First, let's simplify the numerator \( 2 + \frac{1}{x} \). We can combine this into a single fraction: \[ 2 + \frac{1}{x} = \frac{2x}{x} + \frac{1}{x} = \frac{2x + 1}{x} \] Now, we rewrite the complex fraction: \[ \frac{\frac{2x + 1}{x}}{\frac{1}{x^2}} \] To divide by a fraction, we multiply by its reciprocal: \[ = \frac{2x + 1}{x} \cdot \frac{x^2}{1} = (2x + 1) \cdot x = 2x^2 + x \] So the simplified form is \( 2x^2 + x \). 2. For the second complex fraction \( 3 - \frac{x - \frac{9}{x}}{x - 3} \): First, we simplify the numerator \( x - \frac{9}{x} \): \[ x - \frac{9}{x} = \frac{x^2}{x} - \frac{9}{x} = \frac{x^2 - 9}{x} \] Rewrite the complex fraction: \[ 3 - \frac{\frac{x^2 - 9}{x}}{x - 3} \] Again, multiply by the reciprocal: \[ = 3 - \frac{x^2 - 9}{x(x - 3)} \] Next, \( x^2 - 9 \) can be factored as \( (x - 3)(x + 3) \): \[ = 3 - \frac{(x - 3)(x + 3)}{x(x - 3)} \] The \( (x - 3) \) terms cancel out (where \( x \neq 3 \)): \[ = 3 - \frac{x + 3}{x} \] Now, we rewrite \( 3 \): \[ 3 = \frac{3x}{x} \] Thus, we have: \[ = \frac{3x}{x} - \frac{x + 3}{x} = \frac{3x - (x + 3)}{x} = \frac{3x - x - 3}{x} = \frac{2x - 3}{x} \] So the simplified forms are: 1. \( 2x^2 + x \) 2. \( \frac{2x - 3}{x} \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad