Pregunta
upstudy study bank question image url

An animal breeder can buy four types of food for Vietnamese pot-bellied pigs. Each case of Brand A contains 25 units of fiber, 40 units of protein, and 40 units of fat. Each case of Brand B contains 100 units of fiber, 130 units of protein, and 110 units of fat. Each case of Brand C contains 275 units of fiber, 350 units of protein, and 310 units of fat. Each case of Brand D contains 200 units of fiber, 260 units of protein, and 200 units of fat. How many cases of each brand should the breeder mix together to obtain a food that provides 3975 units of fiber, 5100 units of protein, and 4440 units of fat? Let x represent the number of cases of Brand A, y represent the number of cases of Brand B, z represent the number of cases of Brand C, and w represent be the number of cases of Brand D. There are four ways in which the breeder can mix brands to obtain a food that provides 3975 units of fiber, 5100 units of protein, and 4440 units of fat. If \( w=0 \), the solution is \( (\square, \square, \square, 0) \).

Ask by Watson Erickson. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The breeder should mix 0 cases of Brand A, 15 cases of Brand B, 9 cases of Brand C, and 0 cases of Brand D to meet the nutritional requirements.

Solución

To solve the problem, we need to set up a system of equations based on the information provided about the food brands and the nutritional requirements. Let: - \( x \) = number of cases of Brand A - \( y \) = number of cases of Brand B - \( z \) = number of cases of Brand C - \( w \) = number of cases of Brand D The nutritional content for each brand is as follows: - Brand A: 25 units of fiber, 40 units of protein, 40 units of fat - Brand B: 100 units of fiber, 130 units of protein, 110 units of fat - Brand C: 275 units of fiber, 350 units of protein, 310 units of fat - Brand D: 200 units of fiber, 260 units of protein, 200 units of fat The total nutritional requirements are: - Fiber: 3975 units - Protein: 5100 units - Fat: 4440 units We can set up the following equations based on the nutritional content: 1. For fiber: \[ 25x + 100y + 275z + 200w = 3975 \] 2. For protein: \[ 40x + 130y + 350z + 260w = 5100 \] 3. For fat: \[ 40x + 110y + 310z + 200w = 4440 \] Since we are given that \( w = 0 \), we can substitute \( w \) into the equations: 1. For fiber: \[ 25x + 100y + 275z = 3975 \] 2. For protein: \[ 40x + 130y + 350z = 5100 \] 3. For fat: \[ 40x + 110y + 310z = 4440 \] Now we will solve this system of equations for \( x \), \( y \), and \( z \). Let's solve these equations together. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}25x+100y+275z=3975\\40x+130y+350z=5100\\40x+110y+310z=4440\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=159-4y-11z\\40x+130y+350z=5100\\40x+110y+310z=4440\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}40\left(159-4y-11z\right)+130y+350z=5100\\40\left(159-4y-11z\right)+110y+310z=4440\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}6360-30y-90z=5100\\6360-50y-130z=4440\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}y=42-3z\\6360-50y-130z=4440\end{array}\right.\) - step5: Substitute the value of \(y:\) \(6360-50\left(42-3z\right)-130z=4440\) - step6: Simplify: \(4260+20z=4440\) - step7: Move the constant to the right side: \(20z=4440-4260\) - step8: Subtract the numbers: \(20z=180\) - step9: Divide both sides: \(\frac{20z}{20}=\frac{180}{20}\) - step10: Divide the numbers: \(z=9\) - step11: Substitute the value of \(z:\) \(y=42-3\times 9\) - step12: Calculate: \(y=15\) - step13: Substitute the values of \(y,z:\) \(x=159-4\times 15-11\times 9\) - step14: Calculate: \(x=0\) - step15: Calculate: \(\left\{ \begin{array}{l}x=0\\y=15\\z=9\end{array}\right.\) - step16: Check the solution: \(\left\{ \begin{array}{l}x=0\\y=15\\z=9\end{array}\right.\) - step17: Rewrite: \(\left(x,y,z\right) = \left(0,15,9\right)\) The solution to the system of equations, given that \( w = 0 \), is: \[ (x, y, z) = (0, 15, 9) \] This means the breeder should mix: - 0 cases of Brand A - 15 cases of Brand B - 9 cases of Brand C - 0 cases of Brand D Thus, the final answer is \( (0, 15, 9, 0) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle this problem, we can utilize a system of linear equations based on the provided nutritional information for each brand. Let’s formulate the equations: 1. **Fiber Equation**: \( 25x + 100y + 275z + 200w = 3975 \) 2. **Protein Equation**: \( 40x + 130y + 350z + 260w = 5100 \) 3. **Fat Equation**: \( 40x + 110y + 310z + 200w = 4440 \) Once you put in \( w = 0 \), you simplify the problem to three variables (x, y, z) and you only need to solve those equations for various combinations of A, B, and C. After solving these equations you might find integer solutions for x, y, and z, which can be mixed to hit the target values of fiber, protein, and fat. Now, where’s the fun? Picture this: you’re playing chef, mixing your ingredients just right to create the perfect piggy meal! --- If you're fascinated by combinations and equations, diving into the realm of linear programming could be a great next step! This mathematical field explores optimizing a function subject to constraints and is widely used in economics, engineering, and logistics. Strategies like the Simplex Method can help reach optimal solutions efficiently. Also, if you're keen on understanding how breeders ensure nutritional balance for animals, consider picking up a book on animal nutrition. It will shed light on how precise calculations affect animal health and growth, making you a more informed pet parent!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad