Write the function in the form \( f(x)=(x-k) q(x)+r(x) \) for the given value of \( k \). \( f(x)=x^{3}+5 x^{2}-5 x-17, k=-\sqrt{5} \) \( f(x)=\square \) Demonstrate that \( f(k)=r \). \( f(-\sqrt{5})= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To write the function in the form \( f(x) = (x - k) q(x) + r(x) \) for \( k = -\sqrt{5} \), we first substitute \( k \) into the polynomial function \( f(x) = x^3 + 5x^2 - 5x - 17 \). Our goal is to perform polynomial long division or synthetic division by substituting \( x = -\sqrt{5} \). First, we calculate \( f(-\sqrt{5}) \): \[ f(-\sqrt{5}) = (-\sqrt{5})^3 + 5(-\sqrt{5})^2 - 5(-\sqrt{5}) - 17 \] \[ = -5\sqrt{5} + 5(5) + 5\sqrt{5} - 17 \] \[ = -5\sqrt{5} + 25 + 5\sqrt{5} - 17 \] \[ = 25 - 17 = 8 \] So, we have \( r = f(-\sqrt{5}) = 8 \). Next, we perform polynomial long division of \( f(x) \) by \( (x + \sqrt{5}) \). 1. Divide the leading term: \( x^3 \div x = x^2 \). 2. Multiply \( x^2 \) by \( (x + \sqrt{5})\) to get \( x^3 + \sqrt{5} x^2 \). 3. Subtract this from \( f(x) \): \[ (x^3 + 5x^2 - 5x - 17) - (x^3 + \sqrt{5}x^2) = (5 - \sqrt{5})x^2 - 5x - 17 \] 4. Repeat: \( (5 - \sqrt{5})x^2 \div x = (5 - \sqrt{5})x \), multiply and subtract, and continue this until you reach a constant remainder. In the end, we will arrive at: \[ f(x) = (x + \sqrt{5}) q(x) + 8 \] Therefore, putting it all together, the function can be expressed as: \[ f(x)=(x + \sqrt{5}) q(x) + 8 \] Now we have \( r = 8 \) and we demonstrated that \( f(-\sqrt{5}) = 8 \).
