Pregunta
upstudy study bank question image url

Write the function in the form \( f(x)=(x-k) q(x)+r(x) \) for the given value of \( k \). \( f(x)=x^{3}+5 x^{2}-5 x-17, k=-\sqrt{5} \) \( f(x)=\square \) Demonstrate that \( f(k)=r \). \( f(-\sqrt{5})= \)

Ask by Martin Estrada. in the United States
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = (x + \sqrt{5})(x^2 + (5 - \sqrt{5})x - 5\sqrt{5}) + 8 \) And \( f(-\sqrt{5}) = 8 \).

Solución

We are given   f(x) = x³ + 5x² – 5x – 17 and the value   k = –√5. We want to write f(x) in the form   f(x) = (x – k)·q(x) + r(x). Since k = –√5, note that x – k = x – (–√5) = x + √5. Also, when dividing by a linear factor, the remainder r(x) will be a constant r. So we write   f(x) = (x + √5)·q(x) + r. The Remainder Theorem tells us that r = f(–√5). Let’s compute that: 1. Substitute x = –√5 into f(x):   f(–√5) = (–√5)³ + 5(–√5)² – 5(–√5) – 17. 2. Calculate each term:   (–√5)³ = –(√5)³ = –(5√5)     (since (√5)³ = 5√5)   5(–√5)² = 5·(5) = 25           (since (–√5)² = 5)   –5(–√5) = 5√5,   –17 remains as –17. 3. Now, add these together:   f(–√5) = (–5√5) + 25 + (5√5) – 17.   The –5√5 and +5√5 cancel, leaving:   f(–√5) = 25 – 17 = 8. Thus, the remainder is r = 8. Next, we need to determine the quotient polynomial q(x), which must be quadratic (since f(x) is cubic). Let   q(x) = Ax² + Bx + C. Then our representation becomes:   f(x) = (x + √5)(Ax² + Bx + C) + 8. Expand the product:   (x + √5)(Ax² + Bx + C) = Ax³ + Bx² + Cx + A√5·x² + B√5·x + C√5 Combine like terms to get:   = Ax³ + (B + A√5)x² + (C + B√5)x + C√5. So, we have:   f(x) = Ax³ + (B + A√5)x² + (C + B√5)x + (C√5 + 8). This must equal the original f(x) = x³ + 5x² – 5x – 17. Equate the coefficients term-by-term: 1. Coefficient of x³:   A = 1. 2. Coefficient of x²:   B + A√5 = B + √5 = 5  ⟹ B = 5 – √5. 3. Coefficient of x:   C + B√5 = C + (5 – √5)√5 = C + 5√5 – 5 = –5. Solve for C:   C = –5 – 5√5 + 5 = –5√5. 4. Constant term:   C√5 + 8 = (–5√5)√5 + 8 = –5·5 + 8 = –25 + 8 = –17. This checks out with the constant term of f(x). Thus, the quotient polynomial is:   q(x) = x² + (5 – √5)x – 5√5. Finally, we can write the final decomposition of f(x) as:   f(x) = (x + √5)·[x² + (5 – √5)x – 5√5] + 8. And as demonstrated earlier, f(–√5) = 8. So, the answer is:   f(x) = (x + √5)(x² + (5 – √5)x – 5√5) + 8,   with f(–√5) = 8.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To write the function in the form \( f(x) = (x - k) q(x) + r(x) \) for \( k = -\sqrt{5} \), we first substitute \( k \) into the polynomial function \( f(x) = x^3 + 5x^2 - 5x - 17 \). Our goal is to perform polynomial long division or synthetic division by substituting \( x = -\sqrt{5} \). First, we calculate \( f(-\sqrt{5}) \): \[ f(-\sqrt{5}) = (-\sqrt{5})^3 + 5(-\sqrt{5})^2 - 5(-\sqrt{5}) - 17 \] \[ = -5\sqrt{5} + 5(5) + 5\sqrt{5} - 17 \] \[ = -5\sqrt{5} + 25 + 5\sqrt{5} - 17 \] \[ = 25 - 17 = 8 \] So, we have \( r = f(-\sqrt{5}) = 8 \). Next, we perform polynomial long division of \( f(x) \) by \( (x + \sqrt{5}) \). 1. Divide the leading term: \( x^3 \div x = x^2 \). 2. Multiply \( x^2 \) by \( (x + \sqrt{5})\) to get \( x^3 + \sqrt{5} x^2 \). 3. Subtract this from \( f(x) \): \[ (x^3 + 5x^2 - 5x - 17) - (x^3 + \sqrt{5}x^2) = (5 - \sqrt{5})x^2 - 5x - 17 \] 4. Repeat: \( (5 - \sqrt{5})x^2 \div x = (5 - \sqrt{5})x \), multiply and subtract, and continue this until you reach a constant remainder. In the end, we will arrive at: \[ f(x) = (x + \sqrt{5}) q(x) + 8 \] Therefore, putting it all together, the function can be expressed as: \[ f(x)=(x + \sqrt{5}) q(x) + 8 \] Now we have \( r = 8 \) and we demonstrated that \( f(-\sqrt{5}) = 8 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad