Calculate the molarity of 8.25 mL of 0.0876 M KI diluted to 12.0 mL with water. Round your answer to 3 significant figures.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the molarity of the diluted solution, we can use the dilution formula: \( M_1V_1 = M_2V_2 \), where \( M_1 \) is the initial molarity, \( V_1 \) is the initial volume, \( M_2 \) is the final molarity, and \( V_2 \) is the final volume. Here, \( M_1 = 0.0876 \, M \), \( V_1 = 8.25 \, mL \), and \( V_2 = 12.0 \, mL \). First, we need to convert \( V_1 \) and \( V_2 \) into liters: - \( V_1 = 8.25 \, mL = 0.00825 \, L \) - \( V_2 = 12.0 \, mL = 0.0120 \, L \) Now we can use the dilution formula: \[ (0.0876 \, M)(0.00825 \, L) = M_2(0.0120 \, L) \] Calculating the left side: \[ 0.0876 \times 0.00825 = 0.0007221 \, mol \] Now, setting up the equation: \[ 0.0007221 \, mol = M_2 \times 0.0120 \, L \] Solving for \( M_2 \): \[ M_2 = \frac{0.0007221}{0.0120} \approx 0.060175 \] Rounding to three significant figures gives: \[ M_2 \approx 0.0602 \, M \] So the final molarity after dilution is **0.0602 M**.
