Pregunta
upstudy study bank question image url

Calculate the molarity of 8.25 mL of 0.0876 M KI diluted to 12.0 mL with water. Round your answer to 3 significant figures.

Ask by George Nguyen. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The molarity of the diluted KI solution is 0.0602 M.

Solución

To calculate the molarity of the diluted solution, we can use the dilution formula: \[ C_1V_1 = C_2V_2 \] Where: - \(C_1\) is the initial concentration (molarity) of the solution, - \(V_1\) is the initial volume of the solution, - \(C_2\) is the final concentration (molarity) of the diluted solution, - \(V_2\) is the final volume of the solution. Given: - \(C_1 = 0.0876 \, \text{M}\) - \(V_1 = 8.25 \, \text{mL}\) - \(V_2 = 12.0 \, \text{mL}\) We need to find \(C_2\). 1. First, convert the volumes from mL to L: - \(V_1 = 8.25 \, \text{mL} = 0.00825 \, \text{L}\) - \(V_2 = 12.0 \, \text{mL} = 0.0120 \, \text{L}\) 2. Now, we can rearrange the dilution formula to solve for \(C_2\): \[ C_2 = \frac{C_1V_1}{V_2} \] 3. Substitute the known values into the equation: \[ C_2 = \frac{0.0876 \, \text{M} \times 0.00825 \, \text{L}}{0.0120 \, \text{L}} \] Now, let's calculate \(C_2\). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(0.0876\times 0.00825\right)}{0.012}\) - step1: Remove the parentheses: \(\frac{0.0876\times 0.00825}{0.012}\) - step2: Multiply the numbers: \(\frac{0.0007227}{0.012}\) - step3: Convert the expressions: \(\frac{\frac{7227}{10000000}}{\frac{3}{250}}\) - step4: Multiply by the reciprocal: \(\frac{7227}{10000000}\times \frac{250}{3}\) - step5: Reduce the numbers: \(\frac{2409}{40000}\times 1\) - step6: Multiply: \(\frac{2409}{40000}\) The calculation gives us: \[ C_2 = 0.060225 \, \text{M} \] Now, rounding this to three significant figures, we get: \[ C_2 \approx 0.0602 \, \text{M} \] Thus, the molarity of the diluted KI solution is **0.0602 M**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the molarity of the diluted solution, we can use the dilution formula: \( M_1V_1 = M_2V_2 \), where \( M_1 \) is the initial molarity, \( V_1 \) is the initial volume, \( M_2 \) is the final molarity, and \( V_2 \) is the final volume. Here, \( M_1 = 0.0876 \, M \), \( V_1 = 8.25 \, mL \), and \( V_2 = 12.0 \, mL \). First, we need to convert \( V_1 \) and \( V_2 \) into liters: - \( V_1 = 8.25 \, mL = 0.00825 \, L \) - \( V_2 = 12.0 \, mL = 0.0120 \, L \) Now we can use the dilution formula: \[ (0.0876 \, M)(0.00825 \, L) = M_2(0.0120 \, L) \] Calculating the left side: \[ 0.0876 \times 0.00825 = 0.0007221 \, mol \] Now, setting up the equation: \[ 0.0007221 \, mol = M_2 \times 0.0120 \, L \] Solving for \( M_2 \): \[ M_2 = \frac{0.0007221}{0.0120} \approx 0.060175 \] Rounding to three significant figures gives: \[ M_2 \approx 0.0602 \, M \] So the final molarity after dilution is **0.0602 M**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad