Pregunta
upstudy study bank question image url

Cakculate the sum of the series \[ x^{5}-x^{3}+x \cdots+\frac{1}{x^{11}} \]

Ask by Lowe Maxwell. in South Africa
Jan 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sum of the series is \( \frac{x^{18} + 1}{x^{11}(x^2 + 1)} \).

Solución

To calculate the sum of the series: \[ S = x^{5} - x^{3} + x - \frac{1}{x} + \frac{1}{x^{3}} - \frac{1}{x^{5}} + \frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}}, \] we can recognize it as a **geometric series**. Here's a step-by-step breakdown: 1. **Identify the Geometric Series Parameters:** - **First term (\(a\))**: \(x^5\) - **Common ratio (\(r\))**: \(-\frac{1}{x^2}\) (each term is multiplied by \(-1/x^2\) to get the next term) - **Number of terms (\(n\))**: 9 2. **Use the Geometric Series Sum Formula:** The sum of a finite geometric series is given by: \[ S_n = a \cdot \frac{1 - r^n}{1 - r} \] Plugging in the values: \[ S = x^5 \cdot \frac{1 - \left(-\frac{1}{x^2}\right)^9}{1 - \left(-\frac{1}{x^2}\right)} \] 3. **Simplify the Expression:** - Calculate \(\left(-\frac{1}{x^2}\right)^9 = -\frac{1}{x^{18}}\) (since the exponent is odd, the negative sign remains). - Substitute back into the sum: \[ S = x^5 \cdot \frac{1 + \frac{1}{x^{18}}}{1 + \frac{1}{x^2}} \] - Multiply numerator and denominator by \(x^{18}\) to eliminate the negative exponents: \[ S = \frac{x^{23} + x^5}{x^{20} + x^{18}} \] - Factor out common terms: \[ S = \frac{x^5(x^{18} + 1)}{x^{18}(x^2 + 1)} = \frac{x^{18} + 1}{x^{13} + x^{11}} = \frac{x^{18} + 1}{x^{11}(x^2 + 1)} \] 4. **Final Simplified Form:** \[ S = \frac{x^{18} + 1}{x^{11}(x^2 + 1)} \] **Thus, the sum of the series is:** \[ S = \frac{x^{18} + 1}{x^{11} \left(x^{2} + 1\right)} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the sum of the series \( S = x^{5} - x^{3} + x - \frac{1}{x} + \frac{1}{x^{3}} - \frac{1}{x^{5}} + \frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}} \), we can group the terms based on their powers and simplify. First, rewrite the series: \[ S = x^{5} - x^{3} + x - \frac{1}{x} + \frac{1}{x^{3}} - \frac{1}{x^{5}} + \frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}} \] Now we realize that this series can be represented as a combination of two parts: one for positive powers of \( x \) and the other for negative powers of \( x \). Rearranging: \[ S = (x^{5} - x^{3} + x) + \left( -\frac{1}{x} + \frac{1}{x^{3}} - \frac{1}{x^{5}} + \frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}} \right) \] Next, recognize that the terms \( +\frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}} \) can follow the pattern of a geometric series with a slight adjustment using negative powers: \[ \frac{1}{x} + 0 \left( - \frac{1}{x^{3}} + \frac{1}{x^{5}} + \cdots \right) \] We can find the simplification by calculating the positive and negative parts separately. The sum of the positive power series \( x^{5} - x^{3} + x \) can be evaluated as: \[ x + (-x^{3} + x^{5}) = x + (\text{terms in descending order}) \] Now, the negative power part can be considered as: \[ -\left( \frac{1}{x} + \frac{1}{x^{3}} - \frac{1}{x^{5}} + \frac{1}{x^{7}} - \frac{1}{x^{9}} + \frac{1}{x^{11}} \right) \] Using the knowledge of geometric series: \[ \sum_{k=0}^{n} ar^k = \frac{a(1 - r^{n+1})}{1 - r} \] The overall sum \( S \) can be computed efficiently using the recognized pattern. Thus, the complete sum of the series would require substituting in values for \( x \) or \( \frac{1}{x} \) as per the series rules specified.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad