Given vectors \( \mathbf{u} \) and \( \mathbf{v} \) below, find \( a \) such that \( \mathbf{u} \) and \( \mathbf{v} \) are orthogonal. \( \begin{aligned} \mathbf{u} & =[-15,-5] \\ \mathbf{v} & =[a,-12] \\ a & =\text { Ex: } 5\end{aligned} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the value of \( a \) such that the vectors \( \mathbf{u} \) and \( \mathbf{v} \) are orthogonal, we set the dot product of \( \mathbf{u} \) and \( \mathbf{v} \) equal to zero. The dot product is calculated as follows: \[ \mathbf{u} \cdot \mathbf{v} = (-15)(a) + (-5)(-12) = -15a + 60 \] Setting this equal to zero for orthogonality gives us: \[ -15a + 60 = 0 \] Solving for \( a \): \[ -15a = -60 \\ a = 4 \] Thus, the value of \( a \) that makes the vectors \( \mathbf{u} \) and \( \mathbf{v} \) orthogonal is \( a = 4 \).
