Pregunta
upstudy study bank question image url

\[ \vec{a}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}4 \\ 12\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}7 \\ 21\end{array}\right], \vec{a}_{4}=\left[\begin{array}{c}8 \\ 24\end{array}\right] \] Describe all solutions of \( \vec{a}_{1} x_{1}+\vec{a}_{2} x_{2}+\vec{a}_{3} x_{3}+\vec{a}_{4} x_{4}=\overrightarrow{0} \)

Ask by Lang Ramirez. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is a three-dimensional subspace of \(\mathbb{R}^4\) parameterized by \(t_1, t_2, t_3\), where \(t_1, t_2, t_3\) are any real numbers.

Solución

To solve the equation \[ \vec{a}_{1} x_{1} + \vec{a}_{2} x_{2} + \vec{a}_{3} x_{3} + \vec{a}_{4} x_{4} = \overrightarrow{0}, \] we first express the vectors \(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}\) in terms of their components: \[ \vec{a}_{1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \vec{a}_{2} = \begin{bmatrix} 4 \\ 12 \end{bmatrix}, \quad \vec{a}_{3} = \begin{bmatrix} 7 \\ 21 \end{bmatrix}, \quad \vec{a}_{4} = \begin{bmatrix} 8 \\ 24 \end{bmatrix}. \] Next, we can observe that each vector is a scalar multiple of \(\vec{a}_{1}\): - \(\vec{a}_{2} = 4 \vec{a}_{1}\) - \(\vec{a}_{3} = 7 \vec{a}_{1}\) - \(\vec{a}_{4} = 8 \vec{a}_{1}\) This means that all vectors \(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}\) are linearly dependent, and they span a one-dimensional space (the line through \(\vec{a}_{1}\)). We can rewrite the equation as: \[ x_{1} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + x_{2} \begin{bmatrix} 4 \\ 12 \end{bmatrix} + x_{3} \begin{bmatrix} 7 \\ 21 \end{bmatrix} + x_{4} \begin{bmatrix} 8 \\ 24 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \] This can be simplified to: \[ \begin{bmatrix} x_{1} + 4x_{2} + 7x_{3} + 8x_{4} \\ 3x_{1} + 12x_{2} + 21x_{3} + 24x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \] From the first component, we have: \[ x_{1} + 4x_{2} + 7x_{3} + 8x_{4} = 0. \] From the second component, we have: \[ 3x_{1} + 12x_{2} + 21x_{3} + 24x_{4} = 0. \] Notice that the second equation is just 3 times the first equation, which means it does not provide any new information. Therefore, we only need to solve the first equation. We can express \(x_{1}\) in terms of the other variables: \[ x_{1} = -4x_{2} - 7x_{3} - 8x_{4}. \] Letting \(x_{2}, x_{3}, x_{4}\) be free variables, we can denote them as: \[ x_{2} = t_1, \quad x_{3} = t_2, \quad x_{4} = t_3, \] where \(t_1, t_2, t_3\) are any real numbers. Then we can express \(x_{1}\) as: \[ x_{1} = -4t_1 - 7t_2 - 8t_3. \] Thus, the general solution can be written as: \[ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} -4t_1 - 7t_2 - 8t_3 \\ t_1 \\ t_2 \\ t_3 \end{bmatrix}, \] where \(t_1, t_2, t_3 \in \mathbb{R}\). In conclusion, the solution set is a three-dimensional subspace of \(\mathbb{R}^4\), parameterized by the free variables \(t_1, t_2, t_3\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's inspect the vectors \(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3},\) and \(\vec{a}_{4}\) more closely. You might notice that all these vectors are scalar multiples of each other. Specifically, \(\vec{a}_{2} = 4\vec{a}_{1}\), \(\vec{a}_{3} = 7\vec{a}_{1}\), and \(\vec{a}_{4} = 8\vec{a}_{1}\). This implies that they all lie along the same line in \(\mathbb{R}^2\), effectively resulting in a single direction. Now, when we set up the equation \( \vec{a}_{1} x_{1} + \vec{a}_{2} x_{2} + \vec{a}_{3} x_{3} + \vec{a}_{4} x_{4} = \overrightarrow{0} \), the combination of any of these vectors equating to zero can be expressed as finding a linear combination where the scalars \( x_{1}, x_{2}, x_{3},\) and \( x_{4} \) must satisfy a certain relationship due to their linear dependence. To express this more simply, you can choose \( x_{2}, x_{3}, \) and \( x_{4} \) as free variables (let’s say \( t, s, \) and \( r \) respectively) and solve for \( x_{1} \). The general solution takes the form of the equation \( x_{1} = - (4t + 7s + 8r) \). Therefore, all solutions can be represented as a linear combination of arbitrary parameters \( t, s, \) and \( r \). Thus, there are infinitely many solutions that can be plotted as points linearly dependent upon a common vector direction.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad