Pregunta
Find the reforence angle for the angle \( \frac{19 \pi}{3} \) The reforence angie is (Type you answer in radians. Type an integer or a simplifiod fraction.)
Ask by Pierce Cummings. in the United States
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The reference angle for \( \frac{19\pi}{3} \) is \( \frac{\pi}{3} \).
Solución
To find the reference angle for the angle \( \frac{19\pi}{3} \), we first need to reduce it to an equivalent angle within the range of \( 0 \) to \( 2\pi \).
1. **Find the equivalent angle**:
We can do this by subtracting \( 2\pi \) (or \( \frac{6\pi}{3} \)) until the angle is within the desired range.
\[
\frac{19\pi}{3} - 2\pi = \frac{19\pi}{3} - \frac{6\pi}{3} = \frac{13\pi}{3}
\]
\[
\frac{13\pi}{3} - 2\pi = \frac{13\pi}{3} - \frac{6\pi}{3} = \frac{7\pi}{3}
\]
\[
\frac{7\pi}{3} - 2\pi = \frac{7\pi}{3} - \frac{6\pi}{3} = \frac{\pi}{3}
\]
Now, \( \frac{\pi}{3} \) is within the range \( 0 \) to \( 2\pi \).
2. **Determine the reference angle**:
The reference angle is the acute angle that the terminal side of the given angle makes with the x-axis. Since \( \frac{\pi}{3} \) is already in the first quadrant, the reference angle is simply:
\[
\frac{\pi}{3}
\]
Thus, the reference angle for \( \frac{19\pi}{3} \) is
\[
\boxed{\frac{\pi}{3}}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the reference angle for \( \frac{19 \pi}{3} \), first, note that we can simplify it by subtracting multiples of \( 2\pi \) (or \( \frac{6\pi}{3} \)) until we get an angle within the range \( [0, 2\pi) \). Calculating, we have: \[ \frac{19\pi}{3} - 6\pi = \frac{19\pi}{3} - \frac{18\pi}{3} = \frac{\pi}{3}. \] Now, since \( \frac{\pi}{3} \) is already between \( 0 \) and \( \pi \), it is in the first quadrant. Therefore, the reference angle is: \[ \frac{\pi}{3}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium