Pregunta
upstudy study bank question image url

5100 dollars is placed in an account with an annual interest rate of \( 7 \% \). To the nearest year, how long will it take for the account value to reach 24000 dollars?

Ask by Knight Chambers. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 23 years for the account to grow from \$5,100 to \$24,000 at an annual interest rate of 7%.

Solución

We begin with the compound interest formula:   A = P(1 + r)^t Here,   A = 24000 dollars (future amount),   P = 5100 dollars (initial deposit),   r = 0.07 (annual interest rate),   t = number of years. Substitute the known values:   24000 = 5100(1.07)^t Solve for t: 1. Divide both sides by 5100:   (1.07)^t = 24000 / 5100 ≈ 4.70588 2. Apply logarithms to both sides (using any base, here we use natural logarithms):   ln((1.07)^t) = ln(4.70588) 3. Use the logarithm power rule:   t · ln(1.07) = ln(4.70588) 4. Solve for t:   t = ln(4.70588) / ln(1.07) Now, compute the values:   ln(4.70588) ≈ 1.548   ln(1.07) ≈ 0.06766 Thus:   t ≈ 1.548 / 0.06766 ≈ 22.87 Rounding to the nearest whole year gives:   t ≈ 23 years So, it will take approximately 23 years for the account value to reach 24000 dollars.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, we can use the formula for compound interest, which is given by: \[ A = P(1 + r)^t \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested or borrowed for, in years. In this scenario: - \( A = 24000 \) - \( P = 5100 \) - \( r = 0.07 \) Rearranging the formula to solve for \( t \): \[ 24000 = 5100(1 + 0.07)^t \] Dividing both sides by 5100: \[ \frac{24000}{5100} = (1.07)^t \] Calculating \( \frac{24000}{5100} \): \[ \approx 4.70588 \] Now we take the logarithm of both sides to solve for \( t \): \[ \log(4.70588) = t \cdot \log(1.07) \] Now, calculate \( \log(4.70588) \) and \( \log(1.07) \): \[ t = \frac{\log(4.70588)}{\log(1.07)} \] Calculating these logarithms (approximately): \[ \log(4.70588) \approx 0.6720 \quad \text{and} \quad \log(1.07) \approx 0.0291 \] Thus: \[ t \approx \frac{0.6720}{0.0291} \approx 23.06 \] Rounding to the nearest year, it would take approximately **23 years** for the account value to reach 24000 dollars.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad