Pregunta
upstudy study bank question image url

Two angles of a quadrilateral measure \( 194^{\circ} \) and \( 98^{\circ} \). The other two angles are in a ratio of \( 5: 12 \). What are the measures of those two angles? Submit

Ask by Montgomery Tucker. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The two angles measure 20° and 48°.

Solución

The sum of the interior angles of any quadrilateral is 360°. Two of the angles are given as 194° and 98°, so the sum of the remaining two angles must be:   360° - (194° + 98°) = 360° - 292° = 68° If the remaining angles are in a ratio of 5:12, we can let them be 5x and 12x. Then:   5x + 12x = 17x = 68° Solving for x gives:   x = 68° / 17 = 4° Thus, the two angles are:   5x = 5(4°) = 20°   12x = 12(4°) = 48° So, the measures of the two angles are 20° and 48°.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the measures of the other two angles in the quadrilateral, we first note that the sum of the interior angles of a quadrilateral is \( 360^{\circ} \). Given that two angles measure \( 194^{\circ} \) and \( 98^{\circ} \), we can calculate the sum of these two angles: \[ 194^{\circ} + 98^{\circ} = 292^{\circ} \] Now, we can find the sum of the remaining two angles: \[ 360^{\circ} - 292^{\circ} = 68^{\circ} \] Let the two remaining angles be \( 5x \) and \( 12x \) according to the given ratio of \( 5:12 \). The sum of these two angles is: \[ 5x + 12x = 17x \] Therefore, we can set up the equation: \[ 17x = 68^{\circ} \] Solving for \( x \): \[ x = \frac{68^{\circ}}{17} = 4^{\circ} \] Now we can find the measures of the two angles: \[ 5x = 5 \times 4^{\circ} = 20^{\circ} \] \[ 12x = 12 \times 4^{\circ} = 48^{\circ} \] Thus, the measures of the other two angles are \( \boxed{20^{\circ}} \) and \( \boxed{48^{\circ}} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad