2. Solve por the \( \frac{y+3}{3}-\frac{y-3}{4}=1 / 12 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( \frac{y+3}{3}-\frac{y-3}{4}=1 / 12 \), first find a common denominator for the fractions, which is 12. Rewrite each term with a denominator of 12: \[ \frac{4(y+3)}{12} - \frac{3(y-3)}{12} = 1/12 \] Combine the fractions on the left side: \[ \frac{4(y+3) - 3(y-3)}{12} = 1/12 \] This simplifies to: \[ 4y + 12 - 3y + 9 = 1 \] Combine like terms: \[ y + 21 = 1 \] Now, isolate \( y \): \[ y = 1 - 21 \] \[ y = -20 \] Thus, the solution is \( y = -20 \). Double-check your work by plugging \( y = -20 \) back into the original equation to ensure everything balances!
