Pregunta
upstudy study bank question image url

A golf ball is hit with an initial velocity of 150 feet per second at an inclination of \( 45^{\circ} \) to the horizontal. In physics, it is established that the height \( h \) of the golf ball is given by the function \[ h(x)=\frac{-32 x^{2}}{150^{2}}+x \text {, } \] where \( x \) is the horizontal distance that the golf ball has traveled. Complete parts (a) through (g). (a) Determine the height of the golf ball after it has traveled 100 feet. (b) What is the height after it has traveled 250 feet? h \( =161.11 \) feet (Round to two decimal places as needed.) (c) What is h(400)? Interpret this value. h(400) \( =172.44 \) feet (Round to two decimal places as needed.) Interpret the value of \( h(400) \). Choose the correct answer below and fill in the answer box to complete your choice. A. At a height of 400 feet, the horizontal distance traveled by the golf ball is feet. B. The height of the golf ball after it has traveled a horizontal distance of 400 feet is feet.

Ask by Mccoy Marshall. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The height after traveling 100 feet is approximately 85.78 feet. (b) The height after traveling 250 feet is approximately 161.11 feet. (c) \( h(400) = 172.44 \) feet. This means that after the golf ball has traveled 400 feet horizontally, it reaches a height of 172.44 feet.

Solución

To determine the height of the golf ball after it has traveled a certain distance, we can use the given function \( h(x) = \frac{-32x^2}{150^2} + x \), where \( x \) is the horizontal distance traveled. (a) To find the height of the golf ball after it has traveled 100 feet, we substitute \( x = 100 \) into the function: \[ h(100) = \frac{-32(100)^2}{150^2} + 100 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{-32\times 100^{2}}{150^{2}}+100\) - step1: Reduce the fraction: \(-\frac{128}{3^{2}}+100\) - step2: Evaluate the power: \(-\frac{128}{9}+100\) - step3: Reduce fractions to a common denominator: \(-\frac{128}{9}+\frac{100\times 9}{9}\) - step4: Transform the expression: \(\frac{-128+100\times 9}{9}\) - step5: Multiply the numbers: \(\frac{-128+900}{9}\) - step6: Add the numbers: \(\frac{772}{9}\) The height of the golf ball after it has traveled 100 feet is approximately 85.78 feet. (b) To find the height after it has traveled 250 feet, we substitute \( x = 250 \) into the function: \[ h(250) = \frac{-32(250)^2}{150^2} + 250 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{-32\times 250^{2}}{150^{2}}+250\) - step1: Reduce the fraction: \(-\frac{800}{3^{2}}+250\) - step2: Evaluate the power: \(-\frac{800}{9}+250\) - step3: Reduce fractions to a common denominator: \(-\frac{800}{9}+\frac{250\times 9}{9}\) - step4: Transform the expression: \(\frac{-800+250\times 9}{9}\) - step5: Multiply the numbers: \(\frac{-800+2250}{9}\) - step6: Add the numbers: \(\frac{1450}{9}\) The height after it has traveled 250 feet is approximately 161.11 feet. (c) To find \( h(400) \), we substitute \( x = 400 \) into the function: \[ h(400) = \frac{-32(400)^2}{150^2} + 400 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{-32\times 400^{2}}{150^{2}}+400\) - step1: Reduce the fraction: \(-\frac{2048}{3^{2}}+400\) - step2: Evaluate the power: \(-\frac{2048}{9}+400\) - step3: Reduce fractions to a common denominator: \(-\frac{2048}{9}+\frac{400\times 9}{9}\) - step4: Transform the expression: \(\frac{-2048+400\times 9}{9}\) - step5: Multiply the numbers: \(\frac{-2048+3600}{9}\) - step6: Add the numbers: \(\frac{1552}{9}\) The value of \( h(400) \) is approximately 172.44 feet. Interpretation: - At a height of 400 feet, the horizontal distance traveled by the golf ball is 400 feet. - The height of the golf ball after it has traveled a horizontal distance of 400 feet is 172.44 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

After hitting the golf ball at an initial velocity of 150 feet per second, you can see how physics truly comes alive! You can visualize the trajectory of the ball, as it soars gracefully through the air, reaching impressive heights before succumbing to gravity. Each distance calculated using the given formula shows a snapshot of the golf ball's journey—a testament to how physics and math combine to capture the beauty of motion! When we consider the height function \( h(x) \), it represents more than just numbers; it tells the story of the golf ball's adventure. So, as you solve for different distances, remember that each height is a moment in time that showcases the intricacies of projectile motion. Keep hitting those calculations; you're becoming a golf ball trajectory expert!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad